$N \rightarrow T \rightarrow R \rightarrow \emptyset$ \otimes 2-0-2-0

14th International Conference on Automatic Control and Soft Computing

Bragança, Portugal | July 01-03, 2020

Organization

Associação Portuguesa de Controlo Automático

UNIVERSIDADE b INSTITUTO POLITÉCNICO DE BRAGANÇA UTTAD DE TRÁS-OS-MONTES Escola Superior de Tecnologia e Gestão DE TRÁS-OS-MONTES

14th International Conference on Automatic Control and Soft-Computing

CONTROLO'2020

BOOK OF ABSTRACTS

Instituto Politécnico de Bragança July 1-3, 2020

Editors

José Alexandre de Carvalho Gonçalves

Instituto Politécnico de Bragança Campus de Santa Apolónia 5300-253 Bragança - Portugal

Manuel Teixeira Braz César

Instituto Politécnico de Bragança Campus de Santa Apolónia 5300-253 Bragança - Portugal

João Paulo Coelho

Instituto Politécnico de Bragança Campus de Santa Apolónia 5300-253 Bragança - Portugal

Instituto Politécnico de Bragança ISBN: 978-972-745-281-1

Welcome

On behalf of the Conference CONTROLO'2020 Committees, we welcome you to attend the 14th International Conference on Automatic Control and Soft-Computing to be performed online, being organized from Bragança, Portugal, from 1 to 3 of July 2020.

Going to a conference is always an opportunity to establish contacts with other researchers and to grow culturally. Often, from informal conversations fostered by the conferences social program, synergies are generated, leading to new ideas and partnerships. Indeed, networking is a fundamental reason for being present at any conference. Moreover, every time we visit a new country, distinct realities are observed and a kind of mild acculturation happens. Experiences gathered from travelling, shape our vision of the world and promotes cultural enrichment. The CONTROLO'2020 conference was intended to be, not only a scientific event, but also to give the opportunity for the control community to know Bragança, to know the Polytechnic Institute of Bragança and to network face to face in friendly, safe, stimulating and international environment. The city was prepared to receive this scientific community, with a welcome reception at the Castle of Bragança and a gala dinner at the gardens of the Abade de Baçal museum, providing all the participants to get in touch with some of the most important landmarks of the Bragança cultural heritage. The ideal situation would be to communicate face to face, but due to the current pandemic situation, we were forced to change the CONTROLO'2020 conference to an online event.

From a health and security perspective, the benefit of holding the online conference is that it allows attendees to avoid crowd contact and effectively prevent virus propagation. Moreover, travelling between countries are, at the time we write this welcome letter, difficult if not impossible. In spite of all these difficulties, the decision to maintain the date of this event proves the resilience of APCA in adapting to extreme conditions. In addition, it was also important in this decision making, to ensure that the dissemination of the research and development works, submitted and accepted for publication, would be made public in due time. As mentioned earlier, much is lost with this decision as a conference is much more than a meeting aimed to purely scientific matters. Nevertheless, we hope this will be a memorable, valuable, and enjoyable experience! We hope that all participants and other interested readers benefit scientifically from the proceedings and we wish you success in your technical presentations and networking. Even with all the mentioned constraints, all the involved persons and entities, gave an energetic response, providing all the necessary support for an event of this dimension, making it real, even during the current difficult times we all experience.

Once again, thanks for your support to the CONTROLO'2020 conference.

The CONTROLO'2020 local organization committee,

José Gonçalves, Manuel Braz-César and João Paulo Coelho

Contents

Welcome	\mathbf{V}
Instructions for Presenters	1
Organization	3
Committees	5
Steering Committee	5
Scientific Committee	5
Chair	5
Co-Chair	5
Members	5
Invited Plenary Lectures	13
"COLIBRI: A twin wing flapping robot of the size of a hummingbird ca-	
pable of hovering"	13
"On the control of solar thermal plants"	14
"Cyber-physical control of automated transport systems and their influ- ence on road traffic"	16
"Can feedback control attenuate mental illness?"	17
"Fundamentals of automatic control: What to teach? How to teach it?	
How to evaluate what has been learned?"	18
MATLAB Course	21
"Deep Reinforcement Learning with MATLAB & Simulink" \ldots \ldots	21
Conference Program	23
Wednesday, 1 of July	23
Thursday, 2 of July	26
Friday, 3 of July	29

Abstracts	3
Sub-Riemannian geodesics on nested principal bundles (Mauricio Godog	y
Molina and Irina Markina)	. 3
A Comparative Study of Dynamic Mode Decomposition (DMD) and Dy-	-
namical Component Analysis (DyCA) (Moritz Kern, Christian Uh	l
and Monika Warmuth)	. 3
Rolling on affine tangent planes: Parallel transport and the associated sub-Riemannian problems (V. Jurdjevic)	l . 3
Geometric algorithm to generate interpolating splines on Grassmann and Stiefel manifolds (L. Machado, F. Silva Leite and E. Batzies)	l . 3
Predictive Functional Control for Unstable First-Order Dynamic Systems	3
(Muhammad Saleheen Aftab, John Anthony Rossiter and Zhiming	J
Zhang) Gas Network Hierarchical Optimisation (T-P Azevedo Perdicoúlis and P Lopes dos Santos .	. 3 . 3
Double back-calculation approach to deal with input saturation in cas-	-
cade control problems (<i>Marta Leal, Ángeles Hoyo, José Luis Guzmá</i>	n,
and Tore Hägglund)	. 3
A state-space model inversion control method for shake table systems (José Ramírez-Senent, Jaime H. García-Palacios and Iván M. Día	$\frac{3}{nz}$ 3
Your turn to learn! – Flipped Classroom in Automation Courses (Filom ena Soares, P.B. de Moura Oliveira and Celina P. Leão)	- 3
Concepts of threshold assessment for a first course in control engineering (John Anthony Rossiter)	g . 3
Bridging Theory to Practice: Feedforward and Cascade Control with	1
TCLab Arduino Kit (P. B. de Moura Oliveira, John D. Hedengrer	1
and J. Boaventura Cunha)	. 3
Prototyping and Control of a Conveyor Belt: An educational Experiment	t
in Mechatronics (J. Gonçalves, J. Ribeiro and P. Costa)	. 3
Teaching Neural Control with an Arduino Based Control Kit (Ramiro S	
Barbosa)	. 3
Trajectory planning for landing with a direct optimal control algorithm (Bertinho A. Costa and Jo~ao M. Lemos)	1 . 3
An approach to model validation for Model Predictive Control based on	1
Dvurecenska's metrics (<i>Victor D. Reyes Dreke, Manuel A. Péres</i>	z
Serrano and Claudio Garcia1)	. 3
Distributed Adaptive Predictive Control Based on Switched Multiple	e
Models and ADMM (Margarida Nabais and João M. Lemos)	. 3

Optimization of the clinker production phase in a cement plant (Silvia	
Maria Zanoli, Lorenzo Orlietti, Francesco Cocchioni, Giacomo As-	
tolfi and Crescenzo Pepe)	37
Model Predictive Control of a pusher type reheating furnace (Silvia Maria Zanoli, Francesco Cocchioni, Chiara Valzecchi and Crescenzo Pepe)	38
MPC Framework for Supply Chain Management Integrating On-time Delivery and Transport Management (<i>Eduardo Araújo, João Lemos</i>	
Nabais and Miguel Ayala Botto)	38
Fractional Order Predictive Control for Trajectory Tracking of the AR.Drone Quadrotor (<i>Ricardo Cajo, Shiquan Zhao, Douglas Plaza, Robain De</i>	20
Keyser, Clara Ionescu)	39
Temperature Control on Double-Pipe Heat-Exchangers: an application	
$(S.J. Costa, R. Ferreira and J.M. Igreja) \ldots \ldots \ldots$	39
Differential Observation and Integral Action in LTI State-Space Con-	
trollers and the PID Special Case (<i>Paulo Garrido</i>) \ldots \ldots \ldots	40
Robustness issues in Event-Based PI control systems: Internal Model	
Control tuning (R. Vilanova, C. Pedret, M. Barbu, M. Beschi, A.	
Visioli)	40
Practical Validation of a Dual Mode Feedforward-Feedback Control Scheme	
in an Arduino Kit (P. B. de Moura Oliveira and Damir Vrančić).	41
Addendum to "Seeking a unique view to control of simple systems" $(M.$	
Huba1, M. Hypiusová, P. Tapák and A. Serbezov)	41
An IIoT Solution for SME's (Bruno Cunha, Elder Hernández, Rui Rebelo,	
Cristóvão Sousa, Filipe Ferreira)	41
Home Energy Management System in an Algarve residence. First results (A. Ruano, K. Bot and M. Graça Ruano)	42
Open Hardware and Software Robotics Competition for Additional En-	
gagement in ECE Students - The Robot@Factory Lite Case Study	
(Vítor H. Pinto, Armando Sousa, José Lima, José Gonçalves and	
Paulo Costa)	42
Engine Labels Detection for Vehicle Quality Verification in the Assembly	
Line: A Machine Vision Approach (Sílvio Capela, Rita Silva, Salik	
Ram Khanal, Ana Teresa Campaniço, João Barroso, Vítor Filipe) .	43
Prototyping of a low-cost stroboscope to be applied in condition mainte-	
nance: An open hardware and software approach (<i>Laiany Brancal-ião</i> , <i>Caio Camargo</i> , <i>José Goncalves and José Lima</i>)	43
State-space estimation using the behavioral approach: a simple particular	-
case (Lorenzo Ntogramatzidis, Ricardo Pereira and Paula Rocha).	44
Cubic splines in the Grassmann manifold (<i>Fátima Pina and Fátima Silva</i>	
<i>Leite</i>)	44

An Extrinsic Approach to Sub-Riemannian Geodesics on the Orthogonal Group (Knut Hüeper, Iring Marking, and Fátima Silva Leite)	44
Existence and uniqueness for Riemannian cubics (Margarida Camarinha, Fátima Silva Leite and Peter Crouch)	45
Fallback Approximated Constrained Optimal Output Feedback Control under Variable Parameters (<i>Christian Kallies, Mohamed Ibrahim</i> and Rolf Findeisen)	45
Distributed LQ control of a water delivery canal based on a selfish game (João P. Belfo, João M. Lemos and A. Pedro Aguiar)	45
Stabilization using in-domain actuator: a numerical method for a non linear parabolic partial differential equation (<i>Thérèse Azar, Laetitia</i> <i>Perez, Christophe Prieur, Emmanuel Moulay and Laurent Autrique</i>)	46
Direct Power Control of a Doubly Fed Induction Generator Using a Lyapunov Based State Space Approach (<i>Yassine Boukili, A. Pe-</i> <i>dro Aquiar and Adriano Carvalho</i>)	46
Performance Enhancement of a Neato XV-11 Laser Scanner Applied to Mobile Robot Localization: A Stochastic Modeling Approach (J. Goncalves, João Paulo Coelho, M. Braz-César and P. Costa)	47
Welding process automation of aluminum alloys for the transport indus- try: An Industrial Robotics Approach (<i>João Ribeiro, José Gonçalves</i> and Nuno Mineiro)	47
A DOBOT Manipulator Simulation Environment for Teaching Aim with Forward and Inverse Kinematics (<i>Thadeu Brito, José Lima, João</i> Braun, Luis Piardi and Paulo Costa)	19
Using Multi-UAV for Rescue Environment Mapping: Task Planning Op- timization Approach (<i>Ricardo Rosa, Thadeu Brito, Ana I. Pereira,</i>	40
Extrinsic Sensor Calibration Methods for Mobile Robots: A Short Review	40
 (Ricardo B. Sousa, Marcelo R. Petry and António Paulo Moreira) Dynamic Model for the pH in a Raceway Reactor using Deep Learning techniques (Pablo Otálora, José Luis Guzmán, Manuel Berenguel, 	49
Francisco Gabriel Acién) A Fuzzy based model to assess the influence of project risk on corpo-	49
rate behavior (Ricardo Santos, António Abreu, J.M.F. Calado, José Miguel Soares, José Duarte Moleiro Martins and Vitor Anes)	50
Decentralized Control for Multi-Agent Missions based on Flocking Rules (Rafael Ribeiro, Daniel Silvestre and Carlos Silvestre)	50
Classification of Car Parts using Deep Neural Network (Salik Ram Khanal, Eurico Vasco Amorim and Vitor Filipe)	51

Control of bio-inspired multi-robots through gestures using convolutional neural networks in simulated environment (A.A. Saraiva, D.B.S.	
Santos, N.M. Fonseca Ferreira and J. Boaventura-Cunha)	51
Study on the isolator-structure interaction. Influence on the supporting structure (J. Pérez-Aracil, E. Pereira, I. M. Díaz and P. Reynolds)	52
A comparative performance study of inertial vibration controllers for an ultra-lightweight GFRP footbridge (C.M.C. Renedo, J.M. Soria, C. Gallegos, Iván M. Díaz and J. Jiménez-Alonso)	52
Mitigation of earthquake-induced structural pounding between adjoin- ing buildings – State-of-the-art (<i>Pedro Folhento, Rui Barros and</i> <i>Manuel Braz-César</i>)	53
Dynamic Survey of a Telecommunication Tower by Interferometric Radar Technique (F. Paiva, R.C. Barros, J. Henriques, T. Cunha, P. Fey- fant)	54
Motion-based Design of Semi-Active Tuned Mass Dampers to Control Pedestrian-Induced Vibrations in Footbridges under Uncertainty Conditions (Javier Fernando Jiménez-Alonso, José Manuel Soria Herrera, Carlos Martín de la Concha Renedo and Francisco Guillen- González)	55
Cooperative circumnavigation for a mobile target using adaptive estima- tion (Joana Fonseca, Jieqiang Wei, Tor A. Johansen, and Karl H. Johansson)	56
Cloud-Based Framework for Robot operation in Hospital Environments (NM Fonseca Ferreira and J. Boaventura-Cunha)	56
On the Use of a Maximum Correntropy Criterion in Kalman Filtering Based Strategies for Robot Localization and Mapping (<i>Matheus F.</i> <i>Reis, Hamed Moayyed and A. Pedro Aguiar</i>)	57
Vision-Based Object Detection and Localization for Autonomous Air- borne Payload Delivery (James Sewell, Theo van Niekerk, Russell Phillips, Paul Mooney and Riaan Stopforth)	57
LMI-based Sliding Mode Controller Design for an Uncertain Single-Link Flexible Robot Manipulator (<i>José Manuel Andrade and Christopher</i> <i>Edwards</i>)	58
LSLOCK: A Method to Estimate State Space Model by Spatiotemporal Continuity (<i>Tsuyoshi Ishizone and Kazuyuki Nakamura</i>)	58
A decentralized strategy for variational collision avoidance on complete Riemannian manifolds (<i>Leonardo J. Colombo and Jacob R. Goodman</i>)	59
Endpoint Geodesics on the Set of Positive Definite Real Matrices (Max- imilian Stegemeyer and Knut Hüper)	59

Author Index	73
Sponsors	69
Conference Statistics	67
On Control Models in the Motion Stabilization Problem of a Holonomic Mechanical System (<i>Aleksandr Andreev and Olga Peregudova</i>)	65
H. Pinto, José Lima, José Gonçalves and Paulo Costa)	65
Modeling of an Elastic Joint: An Experimental Setup Approach (Vítor	00
Model of a DC Motor with Worm Gearbox (<i>Vítor H. Pinto, José Gonçalves</i> and Paulo Costa)	65
of propofol and remifentanil on the BIS level (Jorge Silva, Teresa Mendonca and Paula Rocha).	64
Osmic, Emir Omerdic, Edin Imsirovic, Tima O. Smajlovic and Edin Omerdic) Control of the depth of anesthesia using a new model for the action	64
Identification and Control of Precalciner in the Cement Plant (Jakub	63
Optimal route planning in steady planar convective flows (<i>Roman Cher-</i>	60
Passive Particle Dynamics in Viscous Vortex Flow (<i>Gil Marques, Maria</i> João Rodrigues and Sílvio Gama)	63
Minimum energy control of passive tracers advection in point vortices flow (<i>Carlos Balsa, Olivier Cots, Joseph Geraaud and Boris Wembe</i>)	63
The numerical control of the motion of a passive particle in a point vortex flow (<i>Carlos Balsa and Sílvio M. Gama</i>)	62
Soiling Monitoring Modelling for Photovoltaic System (Vitor H. Pa- gani, Nelson A. Los, Wellington Maidana, Paulo Leitão, Marcio M. Casaro and Claudinor B. Nascimento)	62
Cunha)	<i>a</i> - 61
CDM Controller Design of a Grid Connected Photovoltaic System (Jo~ao	
Assessment of the nutritional state for olive trees using UAVs (P. Cano Marchal, D. Martínez Gila, S. Illana Rico, J. Gómez Ortega, J. Gámez García)	61
G. Ortega, Fernando Castaño, Francisco R. Rubio and José M. Fornés)	60
sine Boukili and A. Pedro Aguiar)	60
Accelerated Generalized Correntropy Interior Point Method in Power System State Estimation (Hamed Mognued, Dinako Ghadernan, Yas-	

Instructions for Presenters

Time Zone: All conference times are based on Lisbon Time (GMT+1).

Technical Equipment Required:

- Stable Internet connection
- Computer, microphone and webcam

In order to produce good quality presentations, it is suggested the use of:

- Quiet environment
- Proper lighting

Time for Presentation and Discussion:

- Presentation: 15 minutes
- Discussion: 5 minutes

Zoom Instructions:

- ZOOM download link: https://zoom.us/download
- To avoid interruption caused by the unstable network during your presentation, the CONTROLO'2020 organizers strongly recommends that the authors have a presentation recorded, previously sent to the conference organization. We will play it for you if an accident occurs during the presentation.

Organization

This conference is organised under the sponsorship of the Portuguese Association of Automatic Control (APCA), a national member organization of the International Federation of Automatic Control (IFAC), and aims to promote scientific information interchange and informal networking in the fields of Automatic Control and Soft-Computing applied to control problems.

General Chair

José Alexandre de Carvalho Gonçalves

Instituto Politécnico de Bragança Campus de Santa Apolónia 5300-253 Bragança - Portugal

Vice-Chairs

Manuel Teixeira Braz César Instituto Politécnico de Bragança Campus de Santa Apolónia 5300-253 Bragança - Portugal

João Paulo Coelho

Instituto Politécnico de Bragança Campus de Santa Apolónia 5300-253 Bragança - Portugal

Organization Members

Alberto Jorge Lebre Cardoso

Portuguese Association of Automatic Control President University of Coimbra (UC)

Filomena Maria Rocha Menezes Oliveira Soares University of Minho (UM)

João Paulo Coelho Polytechnic Institute of Bragança (IPB)

José Alexandre de Carvalho Gonçalves Polytechnic Institute of Bragança (IPB)

José Boaventura Ribeiro da Cunha University of Trás-os-Montes and Alto Douro (UTAD)

Manuel Teixeira Braz César Polytechnic Institute of Bragança (IPB)

José Paulo Barroso de Moura Oliveira

University of Trás-os-Montes and Alto Douro (UTAD)

Committees

Steering Committee

António Dourado Correia Universidade de Coimbra, Portugal
Francisco R. Rubio Universidad de Sevilla, Spain
João Hespanha University of California, USA
João Miranda Lemos Instituto Superior Técnico, Portugal
Michel Kinnaert Université Libre de Bruxelles, Belgium
Sebastião Feyo de Azevedo Universidade do Porto, Portugal

Scientific Committee

Chair Jan Maciejowski University of Cambridge, UK

Co-Chair António Pedro Aguiar Universidade do Porto, Portugal

Members

Adina Astilean Universitatea Tehnica din Cluj-Napoca, Romania
Agustín Jiménez Universidad Politécnica de Madrid, Spain
Alberto Cardoso Universidade de Coimbra, Portugal
Alberto Isidori Sapienza Università di Roma, Italy

Amélia Caldeira Instituto Politécnico do Porto, Portugal Ana Antunes Instituto Politécnico de Setúbal, Portugal André Gustavo Conceição Federal University of Bahia, Brazil Andrew Sung University of Southern Mississippi, USA Andrzej Dzielinski Warsaw University of Technology, Poland Anna Costa Universidade de S. Paulo, Brazil Anthony Bloch University of Michigan, USA Antonio Barreiro Blas Universidad de Vigo, Spain António Dourado Universidade de Coimbra, Portugal António Fernando Ribeiro Universidade do Minho, Portugal António Paulo Moreira Universidade do Porto, Portugal António Pedro Aguiar Universidade do Porto, Portugal António Ruano Universidade do Algarve, Portugal Antonio Sala Universitat Politecnica de Valencia, Spain António Visioli University of Brescia, Italy Bartlomiej Beliczynski Warsaw University of Technology, Poland Bernardete Martins Ribeiro Universidade de Coimbra, Portugal Boris Mordukhovich Wayne State University, USA Bruno Guerreiro Universidade Nova de Lisboa, Portugal Bruno Siciliano Università degli Studi di Napoli Frederico II, Italy Calim Ciufudean Universitatea Stefan cel Mare Suceava, Romania Camerlia Avram Universitatea Tehnica din Cluj-Napoca, Romania Carla Pinheiro Universidade de Lisboa, Portugal Carlos António Costa Laboratório Nacional de Engenharia Civil, Portugal Carlos Balsa Instituto Politécnico de Bragança, Portugal Carlos Cardeira Universidade de Lisboa, Portugal Carlos Cugnasca Escola Politécnica da Universidade de São Paulo, Brazil Carlos Fonseca Universidade de Coimbra, Portugal Carlos Henrique Santos Universidade Estadual do Oeste do Paraná, Brazil Carlos Silvestre Universidade de Lisboa, Portugal Cesar Prada Moraga Universidad de Valladolid, Spain Claudio Melchiori Università di Bologna, Italy Constantino Lagoa Pennsylvania State University, USA Damir Vrancic Jozef Stefan Institute, Slovenia **Dariuz Sedziak** Poznan University of Technology, Poland Eduardo Camacho Universidad de Sevilla, Spain Erwin-Christian Lovasz Universitatea Politehnica Timioara, Romania Estela Bicho Universidade do Minho, Portugal Fátima Silva Leite Universidade de Coimbra, Portugal Felipe Pait Universidade de São Paulo, Brazil Felippe de Souza Universidade da Beira Interior, Portugal Fernanda Coutinho Instituto Superior de Engenharia de Coimbra, Portugal Fernando Fontes Universidade do Porto, Portugal Filipe Martins Rodrigues Siemens, Portugal Filomena Soares Universidade do Minho, Portugal Francisco Rubio Universidad de Sevilla, Spain Françoise Lamnabhi-Lagarrigue Laboratoire des Signaux et Systèmes, France **Frank Allgower** University of Stuttgart, Germany

Gabor Sziebig Artic University of Norway, Norway Gerardo Acosta U. del Centro de la Provincia de Buenos Aires, Argentina Getúlio Paulo Igrejas Instituto Politécnico de Bragança, Portugal Giovanni Indiveri University of Salento in Lecce, Italy Giuseppe Notarstefano University of Salento in Lecce, Italy Graça Ruano Universidade do Algarve, Portugal Guilherme Kunz Universidade Estadual do Oeste do Paraná, Brasil Guy Dumont University of British Columbia, Canada **Hitay Özbay** Bilkent University, Turkey Husi Géza Debreceni Egyetem, Hungary Isabel Ribeiro Universidade de Lisboa, Portugal **Ívan Díaz** Universidad Politécnica de Madrid, Spain Javier Jiménez-Alonso Universidad Politécnica de Madrid, Spain Javier Sanchis Sáez Universitat Politecnica de Valencia, Spain Jean-Baptiste Mouret I. N. R. en Informatique et en Automatique, France Jerome Jouffroy University of Sourthern Denmark, Denmark Jerome Mendes University of Coimbra, Portugal João Calado Instituto Superior de Engenharia de Lisboa, Portugal João Hespanha University of California at Santa Barbara, USA João Miguel Ferreira Universidade dos Açores, Portugal João Miranda Lemos INESC TEC, Portugal João Paulo Coelho Instituto Politécnico de Bragança, Portugal João Sena Esteves Universidade do Minho, Portugal John Fasoulas Creta Technical Education Institute, Greece

Jonas Sjöberg Chalmers University of Technology, Sweden Jorge Martins Universidade de Lisboa, Portugal José Barbosa MORE Colab, Portugal José Boaventura-Cunha Univ. de Trás-os-Montes e Alto Douro, Portugal José Carlos Príncipe University of Florida, USA José de Carvalho Gonçalves Instituto Politécnico de Bragança, Portugal José Manuel Soria Universidad Politecnica de Madrid, Portugal José Mendes Machado Universidade do Minho, Portugal José Moreno Universidad Nacional de Educación a Distancia, Spain José Ragot Université de Lorraine, France José Sá da Costa Universidade de Lisboa, Portugal José Sánchez Universidade Nacional de Educação à Distância, Spain Josenalde Oliveira Universidade Federal do Rio Grande do Norte, Brazil József Bokor Computer and Automation Research Institute, Hungary Jurek Sasiadek Carleton University, Canada Justina Trojanowska Poznan University of Technology, Poland Katalin Hangos University of Veszprém, Hungary Katarina Zakova Slovak University of Technology in Bratislava, Slovakia Klaus Schilling Julius-Maximilians-Universität Würzburg, Germany Knut Hüper University of Wurzburg, Germany Krzysztof Kozlowski Poznan University of Technology, Poland Krzysztof Tchon Wroclaw University of Technology, Poland Leonardo Honório Universidades Federais de Itajubá, Brazil Leonilde Varela Universidade do Minho, Portugal

Lino de Oliveira Santos Universidade de Coimbra, Portugal Luciano Antonio Mendes Pontifícia Universidade Católica do Paraná, Brazil Luís Filipe Figueira Brito Palma Universidade Nova de Lisboa, Portugal Luís Tiago Paiva Universidade do Porto, Portugal Manuel Domínguez Gonzalez Universidad de Leon, Spain Manuel Teixeira Braz César Instituto Politécnico de Bragança, Portugal Marcelo Petry Universidade Federal de Santa Catarina, Brazil Marcin Iwanowski Warsaw University of Technology, Poland Maria de Amorim Ferreira Universidade do Porto, Portugal Miguel Angel Conde Universidad de León, Spain Miguel Ayala Botto Universidade de Lisboa, Portugal Miguel Bernal Instituto Tecnólogico de Sonora, Mexico Miguel Salichs Universidad Carlos III de Madrid, Spain Mikulas Huba Slovak University of Technology in Bratislava, Slovakia Morgado Dias Universidade da Madeira, Portugal Oscar Barambones Universidad del País Vasco, Spain Paula Rocha Malonek Universidade do Porto, Portugal Paulo Alexandre Afonso Universidade de Coimbra, Portugal Paulo Costa Universidade do Porto, Portugal Paulo Garrido Universidade do Minho, Portugal Paulo Gil Universidade Nova de Lisboa, Portugal Paulo Jorge Leitão Instituto Politécnico de Bragança, Portugal Paulo Lopes dos Santos Universidade do Porto, Portugal Paulo Moura Oliveira Universidade de Trás-os-Montes e Alto Douro, Portugal Paulo Oliveira Universidade de Lisboa, Portugal Pedro Albertos Universitat Politècnica de València, Spain Pedro Peres Universidade Estadual de Campinas, Brazil Peter Fleming University of Sheffield, United Kingdom **Pierre-Antoine Absil** University of Louvain, Belgium Ramon Vilanova Universidad Autonoma de Barcelona, Spain Riccardo Scattolini Politecnico de Milano, Italy Richard Bowden University of Surrey, United Kingdom **Robert Babuska** Technical University of Delft, Netherlands **Robert F. Harrison** University of Sheffield, United Kingdom Roberto Zanetti Freire Pontifícia Universidade Católica do Paraná, Brazil Rui Araújo Universidade de Coimbra, Portugal Rui Carneiro de Barros Universidade do Porto, Portugal Rui Francisco Moura Bastos Universidade de Coimbra, Portugal Sahin Yildirim Erciyes Üniversitesi, Turkey Sandra Isabel Ricardo Universidade de Trás-os-Montes e Alto Douro, Portugal Sebastian Dormido Universidad Nacional de Educación a Distancia, Spain Sebastião Feyo de Azevedo Universidade do Porto, Portugal Silvia Botelho Universidade Federal do Rio Grande, Brazil Silviu-Iulian Niculescu University Paris-Sud, France Sofia Oliveira Lopes Universidade do Minho, Portugal Steven Ding Universität Duisburg-Essen, Germany Susana Margarida da Silva Vieira Universidade de Lisboa, Portugal **Tatiana Pinho** INESC TEC, Portugal

Teresa Perdicoulis Universidade de Trás-os-Montes e Alto Douro, Portugal Tore Hägglund Lund Institute of Technology, Sweden Velimir Jurdjevic University of Toronto, Canada Wojciech Giernacki Poznan University of Technology, Poland Zhan Shu University of Southampton, United Kingdom

Invited Plenary Lectures

"COLIBRI: A twin wing flapping robot of the size of a hummingbird capable of hovering"

Prof. André Preumont

Short Bio: André Preumont received his MSc in Aeronautics from the University of Liege (Belgium) in 1973 and his PhD in Applied Sciences in 1981. He spent 10 years in the nuclear industry before moving in academia. He has been a professor of Mechanical Engineering and Robotics at the Université Libre de Bruxelles (ULB) since 1987, full professor and director of the Active Structures Laboratory from 1991 to 2016, then Emeritus. His current researches include Adaptive Optics, Active damping of space structures and flapping wing robots. He is the author of 7 books. He is a member of the Belgian Royal Academy and of the French Académie de l'Air et de l'Espace (AAE). He was the recipient

of the Alexander von Humboldt Research Award in 2011 (Darmstadt, Germany). He was a visiting professor at Virginia Tech (USA), UT Compiègne and INSA Lyon (France), and Politecnico di Milano (Italy). He is a Fellow of the American Institute of Aeronautics and Astronautics (AIAA).

Abstract: The project aims at designing and constructing a twin wing, tailless flapping wing robot of the size of a hummingbird with emphasis on biomimetic flight. The project started in 2010; the various steps of the project include: wing aerodynamics, flapping wing mechanism, stability and control (the system is naturally unstable), flight dynamics, power consumption, flight simulation and flight testing. The vehicle weights a little more than 20 grams for a wing span of 21 cm; the flapping frequency is 22 Hz. The maiden flight took place in June 2016. Since then, the research has been focused on improving the flight quality, exploring the aeroelastic coupling and extending the flight time. A short video can be seen on this link.

Plenary Session Chair: Manuel Braz César (IPB)

"On the control of solar thermal plants" Prof. Eduardo F. Camacho

Short Bio: Eduardo F. Camacho received the Ph.D. degree in electrical engineering from the University of Seville, Seville, Spain. He is now a Full Professor with the Department of System and Automation Engineering, University of Seville. He is author of Model Predictive Control in the Process Industry (1995), Advanced Control of Solar Plants (1997), Model Predictive Control (1999), (Springer, 2004, 2nd edition), Control e Instrumentacion de Processos Quimicos (Ed. Sintesis), Control of Deadtime Processes (Springer, 2007) and Control of Solar Systems (Springer, 2011, translated and printed in China Machine Press 2014) He has served on various IFAC technical committees and

chaired the IFAC publication Committee from 2002-2005. He was the president of the European Control Association (2005-2007) and chaired the IEEE/CSS International Affairs Committee (2003-2006), Chair of the IFAC Policy Committee and a member of the IEEE/CSS Board of Governors and he is currently a member of the IFAC Council. He has acted as evaluator of projects at national and European level and was appointed Manager of the Advanced Production Technology Program of the Spanish National R&D Program (1996-2000). He was one of the Spanish representatives on the Program Committee of the Growth Research program and expert for the Program Committee of the NMP research priority of the European Union. He has carried out reviews and editorial work for various technical journals and many conferences. He has been one of the Editors of the IFAC Journal, Control Engineering Practice, Editor-at-Large of the European Journal of Control and Subject Editor of Optimal Control:Methods and Applications. Dr. Camacho is an IEEE and IFAC Fellow. He was Publication Chair for the IFAC World Congress 2002, General Chair of the joint 44th IEEE CDC-ECC 2005, and co-General Chair of the joint 50th IEEE CDC-ECC 2011. He has recently been awarded an Advanced Grant by the European Research Council for a project consisting in the integrating solar radiation sensors mounted in drones for controlling solar plants.

Abstract: The use of renewable energy, such as solar energy, experienced a great impulse during the second half of the seventies just after the first big oil crisis. At that time economic issues were the most important factors and the interest in these types of processes decreased when the oil prices fell. There is a renewed interest in the use of renewable energies nowadays driven by the need of reducing the high environmental impact produced by the use of fossil energy systems. There are two main drawbacks of energy systems: a) the resulting energy costs are not yet competitive and b) solar energy is not always available when needed. Considerable research efforts are being devoted to techniques which may help to overcome these drawbacks, control is one of those techniques. A thermal solar power plant basically consists of a system where the solar energy is collected, then concentrated and finally transferred to a fluid. The thermal energy of the hot fluid is then used for different purposes such as generating electricity, the desalination of sea water etc. While in other power generating processes, the main source of energy (the fuel) can be manipulated as it is used as the main control variable, in solar energy systems, the main source of power which is solar radiation cannot be manipulated and furthermore it changes in a seasonal and on a daily base acting as a disturbance when considering it from a control point of view. Solar plants have all the characteristics needed for using advanced control strategies able to cope with changing dynamics, (nonlinearities and uncertainties). As fixed PID controllers cannot cope with some of the mentioned problems, they have to be detuned with low gain, producing sluggish responses or if they are tightly tuned they may produce high oscillations when the dynamics of the process vary, due to environmental and/or operating conditions changes. The use of more efficient control strategies resulting in better responses would increase the number of operational hours of the plants. The talk describes the main solar thermal plants, the control problems involved and how control systems can help in increasing their efficiency. Some illustrative examples are given.

Plenary Session Chair: José Boaventura (UTAD)

"Cyber-physical control of automated transport systems and their influence on road traffic"

Prof. Karl H. Johansson

Short Bio: Karl H. Johansson is Professor at the School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden. He received MSc and PhD degrees from Lund University. He has held visiting positions at UC Berkeley, Caltech, NTU, HKUST Institute of Advanced Studies, and NTNU. His research interests are in networked control systems, cyberphysical systems, and applications in transportation, energy, and automation. He is a member of the Swedish Research Council's Scientific Council for Natural Sciences and Engineering Sciences. He has served on the IEEE Control Systems Society Board of Governors, the IFAC Executive Board, and is currently

Vice-President of the European Control Association Council. He has received several best paper awards and other distinctions from IEEE, IFAC, and ACM. He has been awarded Distinguished Professor with the Swedish Research Council and Wallenberg Scholar with the Knut and Alice Wallenberg Foundation. He has received the Future Research Leader Award from the Swedish Foundation for Strategic Research and the triennial Young Author Prize from IFAC. He is Fellow of the IEEE and the Royal Swedish Academy of Engineering Sciences, and he is IEEE Control Systems Society Distinguished Lecturer.

Abstract: Automated and connected road vehicles enable large-scale control and optimization of the transport system with the potential to radically improve energy efficiency, decrease the environmental footprint, and enhance safety. Freight transportation accounts for a significant amount of all energy consumption and greenhouse gas emissions. In this talk, we will discuss the potential future of road goods transportation and how it can be made more robust and efficient, from the automation of individual long-haulage trucks to the optimization of fleet management and logistics. In this talk we will focus on automated heavy-duty vehicle platooning, which is currently being implemented and evaluated by several truck manufacturers world-wide. We will discuss how to deploy feedback control of individual platoons utilising the cellular communication infrastructure and how such controlled platoons can be used improve overall traffic conditions. It will be argued that the average total variation of traffic density can be reduced and thereby creating incentives for platooning beyond fuel savings and driver support. Extensive experiments done on European highways will illustrate system performance and safety requirements. The presentation will be based on joint work with collaborators at KTH and at the truck manufacturers Scania and Volvo.

Plenary Session Chair: João Paulo Coelho (IPB)

"Can feedback control attenuate mental illness?" Prof. Kevin M. Passino

Short Bio: Kevin M. Passino received his Ph.D. in Electrical Engineering from the University of Notre Dame in 1989. He is currently a Professor of Electrical and Computer Engineering and directs the Technology for Mental Health research group. He as the Director of the Humanitarian Engineering Center at The Ohio State University. He was on the IEEE Humanitarian Engineering Activities Committee. He has served as the Vice President of Technical Activities of the IEEE Control Systems Society (CSS); was an elected member of the IEEE Control Systems Society Board of Governors; was the Program Chair of the 2001 IEEE Conf. on Decision and Control. He is a Fellow of the IEEE. He

is co-editor (with P.J. Antsaklis) of the book "An Introduction to Intelligent and Autonomous Control", Kluwer Academic Press, 1993; co-author (with S. Yurkovich) of the book "Fuzzy Control", Addison Wesley Longman Pub., 1998; co-author (with K.L. Burgess) of the book "Stability Analysis of Discrete Event Systems", John Wiley and Sons, NY, 1998; co-author (with V. Gazi, M.L. Moore, W. Shackleford, F. Proctor, and J.S. Albus) of the book "The RCS Handbook: Tools for Real Time Control Systems Software Development", John Wiley and Sons, NY, 2001; co-author (with J.T. Spooner, M. Maggiore, R. Ordonez) of the book "Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques", John Wiley and Sons, NY, 2002; author of "Biomimicry for Optimization, Control, and Automation", Springer-Verlag, London, UK, 2005; and co-author (with V. Gazi) of the book "Swarm Stability and Optimization", Springer-Verlag, Heidelberg, Germany, 2011; author of "Humanitarian Engineering: Advancing Technology for Sustainable Development", Edition 3, Bede Pub., OH, 2016. More information can be found here.

Abstract: Two new application areas for feedback control science and engineering are introduced for mental health. First, (i) it is explained how stress can be measured in real-time via "heart rate variability" and used to modulate music for stress regulation, and (ii) an overview of initial work on generalizing this approach is provided where a calming method is to be used in a classroom of children, many of whom have been traumatized. Second, our early results show that electroencephalogram (EEG) signals from brain waves can be used to modulate either music or light for the regulation of "frontal alpha asymmetry" which is correlated with depression.

Plenary Session Chair: Paulo Moura Oliveira (UTAD)

"Fundamentals of automatic control: What to teach? How to teach it? How to evaluate what has been learned?"

Prof. Sebastián Dormido

Short Bio: Sebastián Dormido received the B.S. degree in Physics from Complutense University of Madrid, Spain, in 1968, the Ph.D. degree in Physics from the University of the Basque Country, Bilbao, Spain, in 1971. In 1981, he was appointed Professor of Control Engineering at the National Distance Education University (UNED), Madrid. He has served as Vice rector of Research (1983-1985) in UNED and he is now emeritus professor at UNED. His research interests are: Computer Control, Event Based Control, Modelling-Simulation and Control Education with emphasis on Remote and Virtual labs. He has authored or co-authored over 350 technical papers in international journals and

conferences and has supervised 40 Ph.D. students. From 2001-2006 has been President of the Spanish Association of Automatic Control (CEA). In 2007 received a Doctor Honorary Degree from Universidad de Huelva, in 2008 the National Automatic Control prize from Spanish Automatic Control Committee and in 2013 received a Doctor Honorary Degree from Universidad de Almería. From 2014-2016 has been Chair of the IFAC Technical Committee on Control Education (TC9.4) and from 2015-2016 Chair of the IEEE CSS Technical Committee on Control Education. In 2019 received the IFAC Control Education Life Time Achievement Award.

Abstract: The needs of industry for well-trained control systems scientists and engineers are changing, due to marketplace pressures and the tremendous advances in technology. Future generations of control engineering students will have to be broadly educated to cope with cross-disciplinary applications and rapidly changing technology. At the same time, the backgrounds of students are changing. Many come from nontraditional disciplines; they often are less well prepared in mathematics and the sciences while being better adapted to work with modern computing technologies. The time is thus ripe for major renovations in control and systems engineering education.

From this perspective the purpose of this talk is to present some thoughts and personal experiences of 45 academic courses teaching introductory courses of automatic control. Since that time the changes in technology without doubt have been unbelievable and exceeded all serious predictions and for that reason it makes sense to utilize these facilities to improve the student teaching and learning environment. The material covered in most first control courses is still quite similar to that which I covered at my first attempt. This has been the general rule and most of the academic staff often teach a course which is largely the same as it has been for 40 years or more in terms of both academic content and evaluation. Although it is true that every subject has fundamental concepts, that remain unchanged over time and which must be understood by a student, do we teach these aspects for control engineering in the most efficient way given today's technology?

The presentation makes a critical analysis of the use of interactive control tools and the deploy of virtual and remote laboratories at the National University of Distance Education (UNED) where the author has carried out his academic work in the last 35 years.

Plenary Session Chair: José Gonçalves (IPB)

MATLAB Course

"Deep Reinforcement Learning with MATLAB & Simulink"

Carlos Sanchis

Short Bio: Carlos Sanchis is an engineer at the MathWorks Academic Group, where he's responsible for the collaboration with academics and their institutions in Portugal and Spain.

He holds master's degrees in Industrial Engineering (from the Technical University of Valencia) and Project Management (La Salle Business Engineering School) and his research interests lie at the intersection of controls and data science.

Before joining the MathWorks, he had worked on power grid modelling, electronics and data analytics projects in industrial, R&D and academic positions at different organizations including his *alma mater*, Hewlett-Packard and Iberdrola.

Abstract: In this workshop, we'll employ Deep Reinforcement Learning to train a biped robot through simulation to walk safely and optimally following a straight line.

Designing autonomous systems (robots, vehicles, virtual assistants...) requires solving complex optimal control problems that are difficult to undertake because it's hard to define a control strategy or the objectives for each variable.

Machine Learning makes it possible to train "black box" algorithms with example data to tackle sophisticated tasks. Lying at the intersection with Game Theory, Reinforcement Learning is probably the branch with the most promising future in Automatic Control. By means of it, "agents" learn "policies" (control strategies) through trial and error. In order for these policies and the training process to be sophisticated enough, it's often useful to implement them with deep neural networks.

In our example, we'll start with a 3D physical model of the robot in Simscape

MultibodyTM. We'll craft an accurate enough model of the environment and its rewards in Simulink. With Deep Learning ToolboxTM, we'll design neural networks to codify a Reinforcement Learning algorithm and the agent's policy. Then we'll run several simulations in a parallel cluster and, once the agent is trained, we'll see how to deploy it to a programmable controller in the real robot through automatic C++ code generation.

The course is free but you must register here.

Highlights:

- Foundations of modern Reinforcement Learning;
- Applications to autonomous control systems;
- Training agents in a safe virtual environment;
- Easy deployment to embedded devices.

Who Should Attend: This session is aimed at academics interested in Reinforcement Learning, its applications to Control Engineering and the practical aspects of implementing this strategy with MATLAB, Simulink and Reinforcement Learning ToolboxTM.

Conference Program

Wednesday, 1 of July

09:30 - 19:30	Secretariat		
09:40 - 10:00	Opening Session		
10:00 - 11:00	Plenary Session I "On the control of solar thermal plants" Prof. Eduardo F. Camacho		
Parallel Sessions	Nonlinear Data: Theory & Applications I	Control Theory I	
Session Chairs	Knut Hüper Luís Camacho	João M. Lemos Paulo Garrido	
11:05 - 11:25	"Sub-Riemannian geodesics on nested principal bundles" - Irina Markina and Mauricio Molino	"Predictive Functional Control for Un- stable First-Order Dynamic Systems" - Muhammad Saleheen Aftab, John An- thony Rossiter and Zhiming Zhang	
11:25 - 11:45	"A comparative Study of Dynamic Mode Decomposition and Dynamical Component Analysis" - Moritz Kern, Monika Warmuth and Christian Uhl	"Gas Network Hierarchical Optimisa- tion" - Teresa Paula Perdicoulis and P. Lopes dos Santos	
11:45 - 12:05	"Rolling on affine tangent planes: Par- allel transport and the associated sub- Riemannian problems" - Velimir Jurd- jevic	"Double back-calculation approach to deal with input saturation in cascade control problems" - Marta Leal, Ánge- les Hoyo Sánchez, Jose Luis Guzman and Tore Hägglund	
12:05 - 12:25	"Geometric algorithm to generate in- terpolating splines on Grassmann and Stiefel manifolds" - Luis Machado, Fá- tima Silva Leite and Ekkehard Batzies	"A state-space model inversion control method for shake table systems" - Jose Ramírez, Jaime H. García Palacios and Iván Muñoz Díaz	
12:25 - 12:45	Networking		
-------------------	--	--	
12:45 - 14:00	Lunch Break		
14:00 - 15:00	Plenary Session II "COLIBRI: A twin wing flapping robot of the size of a hummingbird capable of hovering" Prof. André J. Preumont		
Parallel Sessions	Control Engineering and Industrial Automation Education	Predictive Control	
Session Chairs	John Anthony Rossiter Filomena Soares	Margarida Nabais Silvia Zanoli	
15:05 - 15:25	"Your turn to learn! – Flipped Class- room in Automation Courses" - Filom- ena Soares, Paulo Oliveira and Celina Leão	"An approach to model validation for Model Predictive Control based on Dvurecenska's metrics" - Victor Dreke, Manuel Serrano and Claudio Garcia	
15:25 - 15:45	"Concepts of threshold assessment for a first course in control engineering" - John Anthony Rossiter	"Distributed Adaptive Predictive Con- trol Based on Switched Multiple Mod- els and ADMM" - Margarida Nabais and Joao M. Lemos	
15:45 - 16:05	"Bridging Theory to Practice: Feed- forward and Cascade Control with TCLab Arduino Kit" - Paulo Moura Oliveira, John Hedengren and José Boaventura	"Optimization of the clinker pro- duction phase in a cement plant" - Silvia Zanoli, Lorenzo Orlietti, Francesco Cocchioni, Giacomo Astolfi and Crescenzo Pepe	
16:05 - 16:25	"Prototyping and Control of a Con- veyor Belt: An educational Ex- periment in Mechatronics" - José Gonçalves, João Ribeiro and Paulo Costa	"Model Predictive Control of a pusher type reheating furnace" - Silvia Zanoli, Francesco Cocchioni, Chiara Valzecchi and Crescenzo Pepe	
16:25 - 16:45	"Teaching Neural Control with an Ar- duino Based Control Kit" - Ramiro Barbosas	"MPC Framework for Supply Chain Management Integrating On-time De- livery and Transport Management" - Eduardo Araújo, João Lemos Nabais and Miguel Ayala Botto	

16:45 - 17:05	"Trajectory planning for landing with a direct optimal control algorithm" - Bertinho Costa and João M. Lemos	"Fractional Order Predictive Con- trol for Trajectory Tracking of the AR.Drone Quadrotor" - Ricardo Diaz, Shiquan Zhao, Douglas Guingla, Clara Ionescu and Robin De Keyser
17:05 - 17:25	Networking	
Parallel Sessions	PID Control : Tuning, Design and Applications	Automation
Session Chairs	Ramón Vilanova Paulo Moura Oliveira	Ramiro Barbosa Salik Khanal
17:25 - 17:45	"Temperature Control on Double-Pipe Heat-Exchangers: an application" - S.J. Costa, R.F. Ferreira and J.M. Igreja	"An HoT Solution for SME's" - Bruno Cunha, Elder Hernandez, Filipe Fer- reira, Rui Rebelo and Cristovão Sousa
17:45 - 18:05	"Differential Observation and Integral Action in LTI State-Space Controllers and the PID Special Case" - Paulo Garrido	"Home Energy Management System in an Algarve residence. First results" - Antonio Ruano, Karol Bot and Maria da Graça Ruano
18:05 - 18:25	"Robustness issues in Event-Based PI control systems: Internal Model Con- trol tuning" - Ramon Vilanova, Carles Pedret, Marian Barbu, Manuel Beschi and Antonio Visioli	"Open Hardware and Software Entry- Level Robotics Competition" - Vítor Hugo Pinto, Armando Sousa, Jose Lima, José Gonçalves and Paulo Costa
18:25 - 18:45	"Practical Validation of a Dual Mode Feedforward-Feedback Control Scheme in an Arduino Kit" - Paulo Moura Oliveira and Damir Vrancic	"Engine Labels Detection for Vehicle Quality Verification in the Assembly Line: A Machine Vision Approach" - Sílvio Capela, Rita Silva, Ana Cam- paniço, Salik Khanal, João Barroso and Vítor Filipe
18:45 - 19:05	"Addendum to 'Seeking a unique view to control of simple systems'" - Miku- las Huba	"Prototyping of a low-cost stroboscope to be applied in condition mainte- nance: An open hardware and soft- ware approach" - Laiany Brancalião, Caio Camargo, José Gonçalves and José Lima
	NT (

19:05 - 19:25

Networking End of Day #1

Thursday, 2 of July

09:30 - 19:30	Secretariat	
10:00 - 11:00	Plenary Session III "Fundamentals of automatic control: What to teach? How to teach it? How to evaluate what has been learned?" Prof. Sebastián Dormido	
Parallel Sessions	Nonlinear Data: Theory & Applications II	Control Theory II
Session Chairs	Knut Hüper Luís Camacho	Teresa Perdicoulis Thérèze Azar
11:05 - 11:25	"State-space estimation using the be- havioral approach: a simple particu- lar case" - Lorenzo Ntogramatzidis, Ri- cardo Pereira and Paula Rocha	"An Approximated Constrained Opti- mal Output Feedback Fallback Control under Variable Parameters" - Chris- tian Kallies, Mohamed Ibrahim and Rolf Findeisen
11:25 - 11:45	"Cubic splines in the Grassmann man- ifold" - Fátima Pina and Fátima Silva Leite	"Distributed LQ control of a water de- livery canal based on a selfish game" - João Belfo, João M. Lemos and An- tónio Aguiar
11:45 - 12:05	"An Extrinsic Approach to Sub- Riemannian Geodesics on the Orthog- onal Group" - Knut Hüeper, Irina Markina and Fátima Silva Leite	"Stabilization using in-domain actua- tor: a numerical method for a non lin- ear parabolic partial differential equa- tion" - Thérèse Azar, Laetitia Perez, Christophe Prieur, Emmanuel Moulay and Laurent Autrique
12:05 - 12:25	"Existence and uniqueness for Rie- mannian cubics" - Margarida Camar- inha, Fátima Silva Leite and Peter Crouch	"Direct Power Control of a Doubly Fed Induction Generator Using a Lya- punov Based State Space Approach" - Yassine Boukili, A. Pedro Aguiar and Adriano Carvalho
12:25 - 12:45	Netwo	orking
12:45 - 14:00	Lunch	Break

14th International Conference	on Automatic	Control a	and Soft	Computing
			CONTI	ROLO'2020

14:00 - 15:00	Plenary Session IV "Can feedback control attenuate mental illness?" Prof. Kevin M. Passino	
Parallel Sessions	Control in Robotic Applications	Soft-Computing Applied to Control
Session Chairs	António Paulo Moreira Paulo Costa	António Ruano Nuno Ferreira
15:05 - 15:25	"Performance Enhancement of a Neato XV-11 Laser Scanner Applied to Mo- bile Robot Localization: A Stochastic Modeling Approach" - José Gonçalves, João Paulo Coelho, Manuel Braz- Cesar and Paulo Costa	"Dynamic Model for the pH in a Race- way Reactor using Deep Learning tech- niques" - Pablo Otálora, Jose Guzman, Manuel Berenguel and Gabriel Acien
15:25 - 15:45	"Welding process automation of aluminum alloys for the transport industry: An Industrial Robotics Approach" - >João Ribeiro, José Gonçalves and Nuno Mineiro	"A Fuzzy based model to assess the influence of project risk on corporate behavior" - Ricardo Santos, Antonio Abreu, João Calado, José Soares, José Martins and Vitor Anes
15:45 - 16:05	"A DOBOT Manipulator Simulation Environment for Teaching Aim with Forward and Inverse Kinematics" - Thadeu Brito, Jose Lima, João Neto, Paulo Costa and Luis Piardi	"Decentralized Control for Multi- Agent Missions based on Flocking Rules" - Rafael Ribeiro, Daniel Sil- vestre and Carlos Silvestre
16:05 - 16:25	"Using Multi-UAV for Rescue Envi- ronment Mapping: Task Planning Op- timization Approach" - Ricardo Da Rosa, Thadeu Brito, Ana Pereira, Jose Lima and Marco Wehrmeister	"Classification of Car Parts using Deep Neural Network" - Salik Khanal, Eu- rico Vasco Amorim and Vitor Filipe
16:25 - 16:45	"Extrinsic Sensor Calibration Methods for Mobile Robots: A Short Review" - Ricardo Sousa, Marcelo Petry and An- tónio Paulo Moreira	"Control of bio-inspired multi-robots through gestures using convolutional neural networks in simulated environ- ment" - Nuno Ferreira, José Boaven- tura, Aratã Saraiva and Domingos Bruno
16:45 - 17:25	Netwo	orking

Control of Smart Structures	Robotics
Iván Diaz Emiliano Pereira	José Lima Thadeu Brito
"Study on the isolator-structure inter- action. Influence on the supporting structure" - Jorge Pérez-Aracil, Emil- iano Pereira-González, Iván Muñoz- Díaz and Paul Reynolds	"Cooperative circumnavigation for a mobile target using adaptive estima- tion" - Joana Fonseca, Jieqiang Wei, Tor Johansen and Karl Johansson
"A comparative performance study of inertial vibration controllers for an ultra-lightweight GFRP footbridge" - Carlos Renedo, Jose Soria, Iván Díaz and Christian Gallegos	"Cloud-Based Framework for Robot operation in Hospital Environments" - Nuno Ferreira and J Boaventura- Cunha
"Mitigation of earthquake-induced structural pounding between adjoining buildings: State-of-the-art" - Pedro Folhento, Rui Barros and Manuel Braz-César	"On the Use of a Maximum Corren- tropy Criterion in Kalman Filtering Based Strategies for Robot Localiza- tion and Mapping" - Matheus F. Reis, Hamed Moayyed and A. Pedro Aguiar
"Dynamic Survey of a Telecommuni- cation Tower by Interferometric Radar Technique" - Fábio Paiva, Barros Rui, Jorge Henriques, Tiago Cunha, Pierre Feyfant and Manuel Braz-César	"Vision-Based Object Detection and Localization for Autonomous Airborne Payload Delivery" - Theo van Niekerk and James Sewell
"Motion-based Design of Semi-Active Tuned Mass Dampers to Control Pedestrian-Induced Vibrations in Footbridges under Uncertainty Con- ditions" - Javier Jiménez-Alonso and José Herrera	"LMI-based Sliding Mode Controller Design for an Uncertain Single-Link Flexible Robot Manipulator" - José Andrade and Christopher Edwards
	Lotan Diaz Emiliano Pereira "Study on the isolator-structure inter- action. Influence on the supporting structure" - Jorge Pérez-Aracil, Emil- iano Pereira-González, Iván Muñoz- Díaz and Paul Reynolds "A comparative performance study of inertial vibration controllers for an ultra-lightweight GFRP footbridge" - Carlos Renedo, Jose Soria, Iván Díaz and Christian Gallegos "Mitigation of earthquake-induced structural pounding between adjoining buildings: State-of-the-art" - Pedro Folhento, Rui Barros and Manuel Braz-César "Dynamic Survey of a Telecommuni- cation Tower by Interferometric Radar Technique" - Fábio Paiva, Barros Rui, Jorge Henriques, Tiago Cunha, Pierre Feyfant and Manuel Braz-César "Motion-based Design of Semi-Active Tuned Mass Dampers to Control Pedestrian-Induced Vibrations in Footbridges under Uncertainty Con- ditions" - Javier Jiménez-Alonso and José Herrera

19:05 - 19:25

Networking End of Day #2

Friday, 3 of July

Secretariat	
Plenary Session V "Cyber-physical control of automated transport systems and their influence on road traffic" Prof. Karl H. Johansson	
Nonlinear Data: Theory & Applications II	Solar Energy and Agriculture
Knut Hüper Luís Camacho	José Boaventura-Cunha Pablo Cano
"LSLOCK: A Method to Estimate State Space Model by Spatiotemporal Continuity" - Tsuyoshi Ishizone and Kazuyuki Nakamura	"Calibration-free HCPV sun tracking strategy" - Manuel Satue, Manuel Or- tega, Fernando Castaño, Francisco Ru- bio and Jose Fornes
"A decentralized strategy for varia- tional collision avoidance on complete Riemannian manifolds" - Leonardo Colombo and Jacob Goodman	"Assessment of the nutritional state for olive trees using UAVs" - Pablo Mar- chal, Diego Gila, Juan Ortega, Javier García and Sergio Rico
"Endpoint Geodesics on the Set of Pos- itive Definite Real Matrices" - Maxim- ilian Stegemeyer and Knut Hueper	"CDM Controller Design of a Grid Connected Photovoltaic System" - João Coelho, Wojciech Giernacki, José Boaventura and José Gonçalves
"Accelerated Generalized Correntropy Interior Point Method in Power Sys- tem State Estimation" - Hamed Moayyed, Diyako Ghaderyan, Yassine Boukili and Pedro Aguiar	"Soiling Monitoring Modelling for Photovoltaic System" - Vitor Pagani, Nelson Los, Wellington Silva, Paulo Leitão, Marcio Casaro and Claudinor Nascimento
Networking	
Lunch Break	
MATLAB Course "Deep reinforcement learning with MATLAB & Simulink" Carlos Sanchis (MathWorks)	
Netwo	orking
	Secretariat Plenary S "Cyber-physical control of autom influence on Prof. Karl H Sufficience Secretaria Continuity & Applications II Knut Hüper Luís Camacho "LSLOCK: A Method to Estimate State Space Model by Spatiotemporal Continuity" - Tsuyoshi Ishizone and Kazuyuki Nakamura "A decentralized strategy for varia- tional collision avoidance on complete Riemannian manifolds" - Leonardo Colombo and Jacob Goodman "Endpoint Geodesics on the Set of Pos- itive Definite Real Matrices" - Maxim- ilian Stegemeyer and Knut Hueper "Accelerated Generalized Correntropy Interior Point Method in Power Sys- tem State Estimation" - Hamed Moayyed, Diyako Ghaderyan, Yassine Boukili and Pedro Aguiar Networkit MATLAN "Deep reinforcement learning Carlos Sanchis

Parallel Sessions	Control in Point Vortex Dynamics	Modelling
Session Chairs	Carlos Balsa Sílvio Gama	Paula Rocha Vítor Pinto
17:25 - 17:45	"The numerical control of the motion of a passive particle in a point vortex flow" - Carlos Balsa and Sílvio Gama	"Identification and Control of Precal- ciner in the Cement Plant" - Jakub Osmic, Emir Omerdic, Edin Imsirovic, Tima Smajlovic and Edin Omerdic
17:45 - 18:05	"Minimum energy control of passive tracers advection in point vortices flow" - Carlos Balsa, Olivier Cots, Joseph Gergaud and Boris Wembe	"Control of the depth of an esthesia using a new model for the action of propofol and remifent anil on the BIS level" - Jorge Silva, Teresa Mendonça and Paula Rocha
18:05 - 18:25	"Passive Particle Dynamics in Viscous Vortex Flow" - Gil Marques, Maria Rodrigues and Sílvio Gama	"Model of a DC Motor with Worm Gearbox" - Vítor Pinto, José Gonçalves and Paulo Costa
18:25 - 18:45	"Optimal route planning in steady pla- nar convective flows" - Roman Cher- tovskih, Maxim Staritsyn and Fer- nando Pereira	"Modeling of an Elastic Joint: An Experimental Setup Approach" - Vítor Pinto, José Lima, José Gonçalves and Paulo Costa
18:45 - 19:05		"On Control Models in the Motion Sta- bilization Problem of a Holonomic Me- chanical System" - Aleksandr Andreev and Olga Peregudova

19:05 - 19:25

Closing Session

Abstracts

Sub-Riemannian geodesics on nested principal bundles

Mauricio Godoy Molina¹ and Irina Markina²

¹Departamento de Matemática y Estadística, Universidad de La Frontera, Temuco, Chile ²Department of Mathematics, University of Bergen, Bergen, Norway

We study the interplay between geodesics on two non-holonomic systems that are related by the action of a Lie group on them. After some geometric preliminaries, we use the Hamiltonian formalism to write the parametric form of geodesics. We present several geometric examples, including a non-holonomic structure on the Gromoll-Meyer exotic sphere and twistor space.

A Comparative Study of Dynamic Mode Decomposition (DMD) and Dynamical Component Analysis (DyCA)

July,1 11:25 Nonlinear Data - Theory & Applications I

July,1 11:05

Applications I

Nonlinear Data - Theory &

Moritz Kern¹, Christian Uhl¹ and Monika Warmuth¹

¹Ansbach University of Applied Sciences, Center for Signal Analysis of Complex Systems, Residenzstr. 8, 91522 Ansbach, Germany

In the following sections two dimensionality reduction methods, dynamic mode decomposition (DMD) and dynamical component analysis (DyCA), are briefly introduced and applied on epileptic EEG data. DMD approximates a linear operator whose eigendecomposition describes the underlying system in frequency space. A reduction in dimensionality is achieved by retrospectively selecting relevant DMD modes. DyCA, on the other hand, naturally provides a dimensionality reduction by projecting onto a relevant subspace in time domain during the process.

Rolling on affine tangent planes: Parallel transport and the associated sub-Riemannian problems

V. Jurdjevic¹

¹Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada

This paper is devoted to the extremal curves associated with a natural optimal control problem associated with the rolling distributions in which a symmetric Riemannian space rolls on it affine plane at a fixed point. We use the Maximum Principle of optimal control to derive the appropriate Hamiltonian equations. Then we show that this Hamiltonian system admits an isospectral representation, which then implies that the system is integrable. In addition , we make a connection with a certain canonical affine-quadratic Hamiltonian that shares the same integrals of motion with the rolling Hamiltonian. This connection provides a link with the elastic curves and the earlier publications on this topic, while at the same time raises interesting new questions.

Geometric algorithm to generate interpolating splines on Grassmann and Stiefel manifolds

L. Machado^{1,2}, F. Silva Leite^{1,3} and E. Batzies⁴

¹Institute of Systems and Robotics, DEEC-UC, 3030-789 Coimbra, Portugal

²Department of Mathematics, University of Trás-os-Montes e Alto Douro (UTAD),5000-801 Vila Real, Portugal ³University of Coimbra, Department of Mathematics, 3001-501 Coimbra, Portugal

⁴Faculty of Computer & Electrical Engineering, Hochschule Furtwangen University,78120 Furtwangen, Germany

In this paper, we present a simplified geometric algorithm to generate interpolating splines on Grassmann and Stiefel manifolds, where not only position but also orientation are required to change smoothly. In this construction, each spline segment is computed using local data only. It turns out that this algorithm does not require a recursive procedure and it is based on the explicit expressions for geodesics or quasi-geodesics on those manifolds.

July,1 11:05 Control Theory I

July,1 12:05

Applications

Nonlinear Data - Theory &

Predictive Functional Control for Unstable First-Order Dynamic Systems

Muhammad Saleheen Aftab¹, John Anthony Rossiter¹ and Zhiming Zhang²

 $^1{\rm Dept.}$ of Automatic Control and Systems Eng., University of Sheffield, UK $^2{\rm State}$ Key Laboratory of Industrial Control Technology, Zhejiang University, China

Predictive functional control (PFC) has emerged as a popular industrial choice owing to its simplicity and cost-effectiveness. Nevertheless, its efficacy diminishes when dealing with challenging dynamics because of prediction mismatch in such scenarios. This paper presents a proposal for reducing prediction mismatch and thus improving behaviour for simple unstable processes; a two-stage design methodology pre-stabilises predictions via proportional compensation before introducing the PFC component. It is demonstrated that pre-stabilisation reduces the dependency of the closed-loop pole on the coincidence point and also improves robustness to uncertainty. Simulation results verify the improved performance as compared to conventional PFC.

July,1 11:45 Nonlinear Data - Theory & Applications I

Gas Network Hierarchical Optimisation

T-P Azevedo Perdicoúlis¹ and P. Lopes dos Santos¹

 $^1\mathrm{ISR},$ University of Coimbra & Eng. Dep at ECT UTAD, Portugal $^2\mathrm{INESC}$ TEC & EE Dep. at FEUP, University of Porto, Portugal

We describe the application of hierachical coordination to gas networks optimisation, requested by the problem decomposition. Special attention is given to the coordination part of an iterative algorithm where every agent finds its best settings based on the decisions of its nearestneighbours. The result is a decentralised fixed-point algorithm whose structure is described in an algebraic setting of the kind of the transient optimisation problem, owing to the case study complexity. The method performance is assessed in three example-networks.

Double back-calculation approach to deal with input saturation in cascade control problems

July,1 11:45 Control Theory I

Marta Leal¹, Ángeles Hoyo¹, José Luis Guzmán¹, and Tore Hägglund²

¹Department of Informatics, ceiA3, CIESOL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain

²Department of Automatic Control, Lund University, Box 118, SE-22100 Lund, Sweden

This paper presents a solution to the saturation problem in cascade control schemes. When cascade control approaches work in linear mode without saturation influence, important improvements can be achieved in industrial control loops. The effect of disturbances and/or nonlinear actuator behaviours on the main process variables can be considerably reduced. However, when saturation arises in the inner loop, these improvements cannot be reached and even sometimes the saturated cascade control scheme gives worse results than a single control loop. Thus, this work analyzes this situation and introduces a very simple solution to solve this problem and to reduce the impact of the saturation effect.

July,1 11:25 Control Theory I A state-space model inversion control method for shake table systems

José Ramírez-Senent¹, Jaime H. García-Palacios¹ and Iván M. Díaz¹

¹Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, 28040, Spain

Shake tables used to perform laboratory dynamic testing of structures are commonly powered by hydraulic servoactuators. Due to the inherent non-linearity of servohydraulic systems, advanced control algorithms are required to achieve ac-curate reference tracking. Traditionally, these algorithms have been based on es-timating, at a first stage, the Frequency Response Function of the system and in-verting it to yield the Impedance Function. The Impedance is then operated with the desired system output and the result transformed into time domain to obtain an initial estimate of the drive to be fed to the system. This estimate is improved during the test in an iterative fashion. One of the main drawbacks of this ap-proach is the fact that references which are not known beforehand and change in real time, cannot be directly addressed. In this work, a control method based on the inversion of a state-space model of the servo-actuator is presented. First off, a non-linear model of the testing system is developed. Next, a Feedback Lineariza-tion procedure to minimize servovalve non linearities is explained and the state-space identification procedure is described. Then, the model inversion method is addressed, together with the state variables estimator required to perform real time control. Finally, the simulation results obtained are discussed. The suggested method shows an excellent performance in numerical experiments; nevertheless, further studies must be undertaken to ensure its successful implementation in actual shake table systems.

July,1 15:05 Control Engineering and Industrial Automation Education

July,1 12:05 Control Theory I

Your turn to learn! - Flipped Classroom in Automation Courses

Filomena Soares¹, P.B. de Moura Oliveira^{2,3} and Celina P. Leão¹

¹Centro Algoritmi, Engineering School, University of Minho, 4800-058 Guimarães, Portugal ²UTAD-University of Trás-os-Montes and Alto Douro, ECT, 5000-801 Vila Real, Portugal ³INESC TEC Technology and Science, Campus da FEUP, 4200 - 465 Porto, Portugal

Flipped Classroom approach was implemented in an Automation course with around 100 students. Videos focused on Grafcet topics were given to students prior to class and problem-based challenges were solved in class by the students in a collaborative way. The teacher's role was to guide students in their learning process. The goal was to identify students' behavior regarding this learning ap-proach, and the videos in particular, by using questionnaires. Result analysis shows a positive feedback from students motivating teachers to enlarge this learn-ing approach to other courses.

Concepts of threshold assessment for a first course in control engineering

John Anthony Rossiter¹

 $^1\mathrm{Dept.}$ of Automatic Control and Systems Eng., University of Sheffield, UK

This paper focuses on the combined challenge of encouraging students to engage with learning and assessment of their competence levels. A core challenge for many staff is the need to distinguish different levels of learning, and to evidence core competence clearly, especially for students with lower marks. This paper proposes a novel assessment strategy which separates core competencies from the more challenging application of the learning in engineering problem solving. The assessment design is efficient for staff and students and allows a reduction in student stress levels while simultaneously giving them strong incentives to adopt good working practices. Evaluation evidence is given to demonstrate the efficacy of the approach.

Bridging Theory to Practice: Feedforward and Cascade Control with TCLab Arduino Kit

P. B. de Moura Oliveira^{1,2}, John D. Hedengren ³ and J. Boaventura Cunha^{1,2}

¹INESC-TEC Technology and Science, Campus da FEUP, Porto ²University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal ³ Department of Chemical Engineering, Brigham Young University, Provo, UT, USA

Practice is of the essence in Engineering courses. A relevant question in control engineering education is: How to close the gap between theory and prac-tice? Once subjects are introduced in theoretical classes, students want to know about its practical use. Thus, it is important to introduce theoretical control concepts with practical experiments, enabling students to easily test and validate the theory. An Arduino based temperature control laboratory (TCLab) is deployed in this study as a portable kit providing students with a simple and effective means to test some feedback control techniques. Teach-ing/learning experiments are proposed involving proportional, integral and derivative controllers with Feedforward and Cascade control structures. Pre-liminary results achieved in a Portuguese university are presented.

July,1 15:45

Control Engineering and

Industrial Automation Education

July,1 15:25 Control Engineering and Industrial Automation Education Prototyping and Control of a Conveyor Belt: An educational Experiment in Mechatronics

July,1 16:05 Control Engineering and Industrial Automation Education

J. Gonçalves¹, J. Ribeiro² and P. Costa³

¹Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal ²Instituto Politécnico de Bragança & CIMO, Portugal ³FEUP and INESC-TEC

In this paper it is presented an educational experiment, that consists of a mechatronic system applied to demonstrate concepts such as prototyping and control. The described mechatronic system is based on a conveyor belt, that was integrated with a manipulator, being physical devices commonly used in the industry. The conveyor Belt was prototyped from scratch, using 3d print technology. Its movement is based on the closed loop control of a DC Motor, based on a PID. The Conveyor Belt was integrated with a Braccio Manipulator from Arduino, using the ZMQ communication library, which is a high-performance asynchronous messaging library.

July,1 16:25 Control Engineering and Industrial Automation Education

Teaching Neural Control with an Arduino Based Control Kit

Ramiro S. Barbosa¹

¹GECAD - Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development Institute of Engineering – Polytechnic of Porto (ISEP/IPP) Dept. of Electrical Engineering, Porto, Portugal

This paper presents an Arduino based control kit used to reinforce con-cepts on neural networks. The kit is used in the Unit Course (UC) of Advanced Control Systems (SISCA) taught at Institute of Engineering of Polytechnic of Porto (ISEP/IPP). It describes some experiments regarding modeling, identifica-tion and control using neural networks. The education control kit proved to be a useful tool to consolidate the theoretical concepts as well to make the classes more interesting, participatory and motivating for students.

July,1 16:45 Control Engineering and Industrial Automation Education

Trajectory planning for landing with a direct optimal control algorithm

Bertinho A. Costa¹ and Jo[~]ao M. Lemos²

¹INESC-ID IST ULisbon, Rua Alves Redol, 9 1000-029 Lisboa, Portugal

This article describes a methodology to introduce undergraduate students to the topic of optimal trajectory planning, which is important topic for several fields such as robotics, aerospace, energy management, economics. To motivate the problem a spacecraft landing maneuver is consider where the trajectory is constrained by the initial and the final states and by saturation values on manipulated variables. An analysis of the dynamic model is performed to simplify the application of the optimization method. The model is discretized and state predictors are build that describe the relation between the initial state, the final state and the manipulated variables. This approach is a direct method one of the methods that is used in optimal control. Unconstrained optimization is used iteratively to compute the control actions and to adjust the weighting factors to progressively fulfill constraints.

An approach to model validation for Model Predictive Control based on Dvurecenska's metrics

July,1 15:05 Predictive Control

Victor D. Reyes Dreke¹, Manuel A. Pérez Serrano¹ and Claudio Garcia1¹

¹Escola Politécnica of the University of São Paulo, São Paulo, SP, Brazil

In this paper, Dvurecenska's validation metrics is proposed as a criterion for selecting a suitable model to be used by a Dynamic Matrix Control (DMC) algorithm. As part of the work developed in this paper, it is analyzed how the DMC algorithm performs when using different models. Besides, a comparison between the validation of these model results is performed. Additionally to the above metrics, the FIT index and the Theil Inequality Coefficient index are employed too. This paper was developed on a simulated plant based on Clarke's benchmark, which is controlled with a DMC. As a result, it can be seen that Dvurecenska's metrics accomplishes its objective and in some cases, gives better validation criteria than the other metrics analyzed.

Distributed Adaptive Predictive Control Based on Switched Multiple Models and ADMM

July,1 15:25 Predictive Control

July,1 15:45 Predictive Control

Margarida Nabais¹ and João M. Lemos¹

¹INESC-ID, IST, Univ Lisboa

This article presents a novel distributed adaptive predictive controller based on supervised multiple models. The local control agents embbed a linear model based predictive control (MPC) algorithm and a coordination algorithm that relies on the Alternating Direction Method of Multipliers (ADMM) distributed optimization algorithm. In order to illustrate the controller proposed, this one is applied to the coordinated control of steam flow and pressure in a biomass thermal power plant. A comparison is made with two other distributed adaptive controllers, with coordination based on a game procedure, one with LQG, and the other with local MPC controllers.

Optimization of the clinker production phase in a cement plant

Silvia Maria Zanoli¹, Lorenzo Orlietti², Francesco Cocchioni², Giacomo Astolfi² and Crescenzo Pepe²

¹Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona (AN), Italy
²Alperia Bartucci S.p.A., Corso Vittorio Emanuele II, 37038 Soave (VR), Italy

In this paper, the control and the optimization of the clinker production phase of an Italian dry cement industry is described. A tailored Advanced Process Control architecture has been proposed, based on a two-layer Model Predictive Control strategy. The critical process variables have been included in the controller setup through linear models with delays. The controller moves are computed through two subsequent constrained optimization prob-lems with cooperation and consistency assumptions. The developed control-ler replaced a previous control system based on plant operators' manual conduction. Thanks to the multivariable and predictive approach, more prof-itable operating points have been guaranteed for the process, significantly improving the process control performances. In this way, the energy con-sumption and the environmental emissions have been reduced, taking into account quality and production requirements.

Model Predictive Control of a pusher type reheating furnace

Silvia Maria Zanoli¹, Francesco Cocchioni², Chiara Valzecchi² and Crescenzo Pepe²

¹Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona (AN), Italy
²Alperia Bartucci S.p.A., Corso Vittorio Emanuele II, 37038 Soave (VR), Italy

This paper focuses on the design of an Advanced Process Control system for the control and the optimization of a pusher type billets reheating furnace. The controller formulation is based on a two-layer Model Predictive Control strategy. The formulated linear model of the furnace variables and the billets temperature behavior is constituted by a combination of Linear Time Invariant and Linear Parameter Varying models. The basic control mode is based on an adaptive approach. Simulation and field results on a plant located in an Italian steel industry have shown the reliability of the proposed control system and its optimality with respect to the previous control system, based on local PID controllers managed by plant operators. Significant improvements on process control have been obtained, together with a major and safer approach to process operating limits.

MPC Framework for Supply Chain Management Integrating On-time Delivery and Transport Management

Eduardo Araújo², João Lemos Nabais^{1,2} and Miguel Ayala Botto²

¹School of Business Administration, Instituto Politécnico de Setúbal, Campus do IPS, Estefanilha, 2910-761 Setúbal, Portugal
²IDMEC, Instituto Superior Técnico, Universidade de Lisboa

Currently, there is a challenge in Supply Chain Management (SCM) which consists on the coordination of efforts to correspond to clients demands in the presence of conflicting goals of the various chain actors. On the one hand, suppliers, manufacturers, and retailers are interested in providing to customers the right product, in the right amount, at the right time, for the right price, and at the right place. On the other hand, transport providers (TP) want to efficiently allocate their fleets and minimise the number of movements. To solve the trade-off between (i) on-time delivery, and (ii) efficient transportation management, this work presents a novel dynamic approach for real-time SCM integrating transportation operations, based on a model predictive control framework. Focusing on the discrete time case, a flow perspective is taken in which the material flow is decomposed into flow of goods and flow of transportation vehicles to model the conflicting views of the various actors. The framework performance is illustrated with simulation studies considering two-echelon vertical integrated chain with manufacturing.

July,1 16:05 Predictive Control

Fractional Order Predictive Control for Trajectory Tracking of the AR.Drone Quadrotor

July,1 16:45 Predictive Control

Ricardo Cajo^{1,2,3}, Shiquan Zhao^{1,4}, Douglas Plaza³, Robain De Keyser^{1,2}, Clara Ionescu^{1,2,5}

¹Ghent University, Department of Electromechanical, Systems and Metal Engineering, Tech Lane Science Park 125, Ghent B-9052, Belgium

²Flanders Make, EEDT Decision & Control, Ghent B-9052, Belgium

³Escuela Superior Politécnica del Litoral ESPOL, Campus Gustavo Galindo km 30.5 Via Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador

⁴Harbin Engineering University, College of Automation, Harbin 150001, China

⁵Technical University of Cluj-Napoca, Department of Automation, Memorandumului Street No.28, Cluj-Napoca 400114, Romania

A fractional-order model predictive control with extended prediction self-adaptive control (FOMPC-EPSAC) strategy is proposed for the AR.Drone quadrotor system. The objective is to achieve an optimal trajectory tracking control for an AR.Drone quadrotor by using a fractional order integral cost function in the conventional MPC-EPSAC algorithm. In addition, a particle swarm optimization (PSO) algorithm is applied to nd the optimal weighting matrices, which depend on the terms (alpha,beta) of the fractional order cost function. Some simulation results show the superiority of FOMPC-EPSAC over conventional MPC-EPSAC with respect to trajectory tracking and robustness under wind disturbances.

Temperature Control on Double-Pipe Heat-Exchangers: an application

July,1 17:25 PID Control : Tuning, Design and Applications

S.J. Costa¹, R. Ferreira² and J.M. Igreja³

¹ISEL-IPL, R. Conselheiro Emídio Navarro, 1, Lisboa, Portugal ²ISEL-IPL and IST-ULisboa, Lisboa, Portugal ³ISEL-IPL and INESC-ID, Lisboa, Portugal

This paper describes mathematical models of heat-exchangers and a control application for a laboratory dual mode (co-current or counter-current) heat-exchanger apparatus. In particular, the co-current and counter-current transfer functions are obtained from the partial differential equations (PDE) that describes the heat equations for both cold and hot uid travelling in the pipes. Pole and zeros maps are also obtained for further dynamical analysis. A PID solution for the control of a laboratory apparatus that can work in both co- and counter-current mode is explained and some results are presented.

Differential Observation and Integral Action in LTI State-Space Controllers and the PID Special Case

Paulo Garrido^{1,2}

¹CAR RG, Algoritmi Center, Guimarães, Portugal ²LIAAD, INESC TEC, Porto, Portugal

This paper makes the case that practical differentiation of measured state variables may be seen as an observation or estimation scheme for linear time invariant state space controllers. It is shown that although not having the separation property, the estimation error of this scheme – differential observation – converges to zero if the resulting closed loop system is strictly stable. On the basis of this concept, it is shown that PID controllers may be interpreted as a special case of state space controllers endowed with differential observation.

Robustness issues in Event-Based PI control systems: Internal Model Control tuning

R. Vilanova¹, C. Pedret¹, M. Barbu², M. Beschi³, A. Visioli³

¹Universitat Autónoma de Barcelona, Spain ²"Dunarea de Jos" Univerity of Galati, Romania ³University of Brescia, Italy

Event-based solutions for process control applications are of clear increasing interest. The approach is really appealing because of clear advantages for what matters to minimal use of communication bandwidth, energy consumption, etc. Therefore, completely appropriate for the wireless sensor-actuator networks. One of the solutions that, at least within the process control domain, has reached more acceptance is that of event-based control on the basis of a Simmetric-Send-on-Delta (SSOD) event detector. In this work, a specific implementation of this smart sensor is proposed with clear advantages with respect to the usual ones. The major advantage is that the resulting event-based control system has better robustness properties than the usual implementation that is found in the literature.

July,1 17:45 PID Control : Tuning, Design and Applications

July,1 18:05 PID Control : Tuning, Design and Applications

Practical Validation of a Dual Mode Feedforward-Feedback Control Scheme in an Arduino Kit

P. B. de Moura Oliveira¹ and Damir Vrančić¹

¹INESC-TEC Technology and Science, Campus da FEUP, Porto, Department of Engineering, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal ²Department of Systems and Control, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia

Two major control design objectives are set-point tracking and disturbance rejection. How to design a control system to achieve the best possible per-formance for both objectives is a classical research issue. For most systems these design objectives are conflicting meaning that a single controller can-not cope in providing overall good performance. In this paper, a dual mode control system is reported using a feedforward controller to achieve optimum set-point tracking and PID control to deal with disturbance rejection. A par-ticle swarm optimization algorithm is deployed to design the feedforward controllers. The proposed control system is tested on a custom-made laboratory control temperature kit based on Arduino system. Preliminary results are presented showing the dual-mode control potential merits.

Addendum to "Seeking a unique view to control of simple systems"

M. Huba1¹, M. Hypiusová¹, P. Tapák¹ and A. Serbezov²

¹Slovak University of Technology in Bratislava, 812 19 Bratislava, Slovakia ¹Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA

This article extends spectrum of basic structures with disturbance reconstruction and compensation considered in the original paper presented at IFAC ACE'19 symposium and discusses problems met in their application, interpretation and education. It is preferably focussed on developing understanding of basic control problems wrapped arround the simplest plant models, which may be useful in dealing with their generalization to more complex tasks. Reactions to some comments received are also included and responded.

An IIoT Solution for SME's

Bruno Cunha¹, Elder Hernández¹, Rui Rebelo¹, Cristóvão Sousa^{1,2}, Filipe Ferreira¹

¹INESC TEC, Porto, 4200-465, Portugal ²CIICESI-ESTG, Politécnico do Porto, Felgueiras, 4610-156, Portugal

The innovation and digitalization of the industry is happening triggered by the Industry 4.0 and Industrial Internet-of-Things (IIoT) paradigm. Enterprises are following the trend of digital transformation and are fostering projects that enable a higher comprehension of I4.0 solutions to answer their needs. The IIoT platforms have been a central component for industrial systems architectures to enable interoperability and data flow within industrial settings. However, the digitalization process has all sorts of shortcomings associated to them, and in the SME's this transformation has been slow to none. In this work we showcase a proof of concept of an IIoT platform that intends to simplify the digitalization process in SME's, based on the Portuguese footwear industry cluster.

July,1 18:25 PID Control : Tuning, Design and Applications

18:45 PID Control : Tuning, Design and Applications

July,1 17:25 Automation

Home Energy Management System in an Algarve residence. First results

July,1 17:45 Automation

A. Ruano^{1,2}, K. Bot¹ and M. Graça Ruano^{1,3}

¹CINTAL, Universidade do Algarve, 8005, Faro, Portugal ²IDMEC; Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal ³CISUC, University of Coimbra, Coimbra, Portugal

Home Energy Management Systems (HEMS) are becoming increasingly re-searched to invert the continuously increasing trend in (electrical) energy con-sumption in buildings. One of the key aspects of any HEMS is the real-time monitoring of all variables related with the management system, as well as the re-al-time control of schedulable electric appliances. This paper describes a data ac-quisition system implemented in a residential house in the South of Portugal. With the small amount of data collected, a model to forecast total electric con-sumption was developed. Results show that, even with these small data, the mod-el can be used in a predictive control scheduling mechanism for HEMS.

July,1 18:05 Automation Open Hardware and Software Robotics Competition for Additional Engagement in ECE Students - The Robot@Factory Lite Case Study

Vítor H. Pinto^{1,3}, Armando Sousa^{1,3}, José Lima², José Gonçalves² and Paulo Costa^{1,3}

¹FEUP - University of Porto, Faculty of Engineering, Porto, Portugal

¹IPB - Polytechnic Institute of Bragança Bragança, Portugal

¹INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, CRIIS - Centre for Robotics in Industry and Intelligent Systems Porto, Portugal

Throughout this paper, a competition created to enable an inter-connection between the academic and industrial paradigms is presented, using Open Hardware and Software. This competition is called Robot at Factory Lite and serves as case study as an additional enrolment for students to apply knowledge in the fields of programming, perception, motion planning, task planning, autonomous robotic, among others.

Engine Labels Detection for Vehicle Quality Verification in the Assembly Line: A Machine Vision Approach

July,1 18:25 Automation

Sílvio Capela¹, Rita Silva¹, Salik Ram Khanal¹, Ana Teresa Campaniço¹, João Barroso^{1,2}, Vítor Filipe^{1,2}

¹School of Science and Technology, Universidade de Trás-os-Montes e Alto Douro 5000-801, Vila Real, Portugal ¹INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, 4200-465, Porto, Portugal

The automotive industry has an extremely high-quality product standard, not just for the security risks each faulty component can present, but the very brand image it must uphold at all times to stay competitive. In this paper, a prototype model is proposed for smart quality inspection using machine vision. The engine levels are detected using Faster-RCNN and YOLOv3 object detection algorithms. All the experiments were carried out using a custom dataset collected at an automotive assembly plant. Eight engine labels of two brands (Citroën and Peugeot) and more than ten models were detected. The results were evaluated using the metrics Intersection of Union (IoU), mean of Average Precision (mAP), Confusion Matrix, Precision, and Recall. The results were validated in three folds. The models were trained using a custom dataset containing images and annotation files collected and prepared manually. Data Augmentation techniques were applied to increase image diversity. The result without data augmentation was 92.5%, and with it, the value was up to 100%. Faster-RCNN has more accurate results compared to YOLOv3.

Prototyping of a low-cost stroboscope to be applied in condition maintenance: An open hardware and software approach

July,1 18:45 Automation

Laiany Brancalião¹, Caio Camargo¹, José Gonçalves² and José Lima²

¹Polytechnic Institute of Bragança, Bragança, Portugal

²Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança,

Campus de Santa Apolónia, 5300-253 Bragança, Portugal

This paper aims to describe the prototyping of a low-cost stroboscope, to be applied in condition maintenance, which consists of an optical equipment capable of generating flashes of light at different frequencies, allowing to measure the rotation velocity of machines and contributing to maintenance processes in the industry. This device is based on the stroboscopic effect, a visual event that occurs when a continuous movement is presented by a series of samples, generated by flashes of light. When the frequency of the rotation movement is the same frequency of light pulses, the process will appear stationary. Having as reference the high cost of the commercial stroboscopes, it was developed an Arduino basd stroboscope prototype, with LED technology and 3D printing, using an open hardware and software approach. The final prototype went through calibration and validation processes, achieving a performance very similar to a commercial instrument.

State-space estimation using the behavioral approach: a simple particular case

July,2 11:05 Nonlinear Data - Theory & Applications II

Lorenzo Ntogramatzidis¹, Ricardo Pereira² and Paula Rocha³

¹Department of Mathematics and Statistics, Curtin University, Perth (WA), Australia ²CIDMA, Department of Mathematics, University of Aveiro, Portugal ³SYSTEC, Faculty of Engineering, University of Porto, Portugal

In this paper we apply the behavioral estimation theory to the particular case of state-space systems. We derive new necessary and sufficient conditions for the solvability of the estimation problem in the presence of disturbances, and provide a method to construct an estimator in case the problem is solvable.

July,2 11:25 Nonlinear Data - Theory & Applications II

> July,2 11:45

Applications II

Nonlinear Data - Theory &

Cubic splines in the Grassmann manifold

Fátima Pina^{1,2} and Fátima Silva Leite^{1,2}

¹University of Coimbra, Department of Mathematics, 3001-501 Coimbra, Portugal ¹Institute of Systems and Robotics, DEEC-UC, 3030-789 Coimbra, Portugal

We present a detailed implementation of the De Casteljau algorithm to generate cubic splines that solve certain interpolation problems on the Grassmann manifold.

An Extrinsic Approach to Sub-Riemannian Geodesics on the Orthogonal Group

Knut Hüeper¹, Irina Markina², and Fátima Silva Leite³

¹Institute for Mathematics, Julius-Maximilians-Universität, Würzburg, Germany ²Mathematical Institute, University of Bergen, Norway ³University of Coimbra, Department of Mathematics, 3001-501 Coimbra and Institute of Systems and Robotics,

DEEC-UC, 3030-789 Coimbra, Portugal

In this paper we use a variational approach, combining holonomic and nonholonomic constraints, to find an equation for sub-Riemannian geodesics on the orthogonal group. This approach is extrinsic in nature and makes the paper fully self-contained and possibly more accessible for a wide audience. The problem is formulated in the vector space of real square matrices, subject to two side conditions, and solved using a Langrange multiplier approach. The nonholonomic constraint corresponds to the requirement that the curves are tangent to a left-invariant distribution. This distribution is defined by the vector space that shows up in a Cartan decomposition of the Lie algebra associated to the orthogonal group.

Existence and uniqueness for Riemannian cubics

Margarida Camarinha¹, Fátima Silva Leite² and Peter Crouch³

¹University of Coimbra, CMUC, Department of Mathematics, 3001-501 Coimbra, Portugal ²University of Coimbra, Department of Mathematics, 3001-501 Coimbra, Portugal and Institute of Systems and Robotics, DEEC-UC, 3030-789 Coimbra, Portugal ³Arlington College of Engineering, University of Texas at Arlington, Arlington, Texas, USA

We study local existence and uniqueness for Riemannian cubics satisfying boundary conditions. We define the biexponential map and use it to relate initial and boundary data. We also describe biconjugate points along cubics by means of the biexponential map.

Fallback Approximated Constrained Optimal Output Feedback Control under Variable Parameters

July,2 11:05 Control Theory II

Christian Kallies¹, Mohamed Ibrahim¹ and Rolf Findeisen¹

 $^{1}\mathrm{Laboratory}$ for Systems Theory and Automatic Control, Otto von Guericke University, Magdeburg, Germany

Safety critical control problems often require the availability of fallback strategies, in case of failure of the main control scheme, sensors or actuators. Those controllers should provide safe operation or emergency shut down of the system under all circumstance. They should also be able to operate subject to reduced information, and limited computation power. We propose a veriable and eciently implementable output feedback controller based on an approximated explicit solution of a constrained optimal control problem. The control law is derived by solving an innite horizon optimal control problem utilizing Al-brekht's Method to obtain power series expansions. The feedback control law is a polynomial in terms of the measurements and estimated parameters, thus the online evaluation can be done eciently . We provide conditions for convergence and existence of the optimal control law and the corresponding value function. Simulation results for the control of a non-linear autonomous quadcopter example show the eectiveness of the proposed strategy.

Distributed LQ control of a water delivery canal based on a selfish game

João P. Belfo¹, João M. Lemos¹ and A. Pedro Aguiar²

July,2 11:25 Control Theory II

¹INESC-ID, Instituto Superior Técnico, Lisboa, Portugal ²SYSTEC, Faculdade de Engenharia da Universidade do Porto, Portugal

This article describes the design of distributed LQ controllers based on a linear model of a water delivery canal. According to a distributed strategy, a local control agent is associated to each gate of the canal. The main goal is to control the position of the gates in order to drive the water levels for each pool to variable references. For this purpose, local optimization problems are presented, that will be solved at each local controller. In order to achieve a consensus between agents, a coordination method, based on game theory, is presented, including its convergence analysis. The overall controller architecture is described. Simulations, illustrating situations in which the convergence conditions are satisfied, are presented.

July,2 12:05 Nonlinear Data - Theory & Applications II

Stabilization using in-domain actuator: a numerical method for a non linear parabolic partial differential equation

July,2 11:45 Control Theory II

Thérèse Azar¹, Laetitia Perez¹, Christophe Prieur², Emmanuel Moulay³ and Laurent Autrique¹

¹LARIS-Polytech, Angers, France ²Gipsa-Lab, Grenoble, France ³XLIM, Poitiers, France

This paper deals with the problem of null controllability for an unstable nonlinear parabolic partial differential equation (PDE) system considering in-domain actuator. The main objective of this communication is to provide an efficient control law in order to stabilize the system state close to zero in a desired time whatever the initial state is. A numerical approach is developed and in order to highlight the relevance of the proposed control strategy, a realistic physical problem is investigated. Thermal evolution of a thin rod with homogeneous Dirichlet boundaries conditions is considered. Thermal state is described by the heat equation and assuming that thermal conductivity is temperature dependent, a nonlinear mathematical model has to be taken into account. Considering that all the model inputs are known, a direct problem is numerically solved (considering a finite element method) in order to estimate the temperature at each point of the 1D geometry and at each instant. Then an inverse problem is formulated in such a way as to determine the in-domain control which ensure a final temperature close to zero. An iterative regularization method based on the conjugate gradient method (CGM) is developed for the minimization a quadratic cost function (output error). Several numerical experimentations are provided in order to discuss the numerical approach attractiveness.

Direct Power Control of a Doubly Fed Induction Generator Using a Lyapunov Based State Space Approach

July,2 12:05 Control Theory II

Yassine Boukili¹, A. Pedro Aguiar¹ and Adriano Carvalho¹

¹Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal

This paper addresses the modelling and control design of a Doubly-Fed Induction Generator (DFIG) when connected to a grid subject to unbalanced grid voltage conditions. Using Lyapunov theory, we derive a robust direct power control law that tracks the active and reactive power references that are adequately manipulated accordingly with the presence of unbalanced grid voltage dips. Simulation results illustrate the robustness and effectiveness of the proposed controller.

Performance Enhancement of a Neato XV-11 Laser Scanner Applied to Mobile Robot Localization: A Stochastic Modeling Approach

J. Gonçalves¹, João Paulo Coelho¹, M. Braz-César² and P. Costa³

¹Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
²Instituto Politécnico de Bragança & CONSTRUCT R&D Unit, FEUP, Portugal
³FEUP and INESC-TEC

Laser scanners are widely used in mobile robotics localization systems but, despite the enormous potential of its use, their high price tag is a major drawback, mainly for hobbyist and educational robotics practitioners that usually have a reduced budget. The Neato XV-11 Laser Scanner is a very low cost alternative, when compared with the current available laser scanners, being this fact the main motivation for its use. The modeling of a hacked Neato XV-11 Laser Scanner allows to provide valuable information that can promote the development of better designs of robot localization systems based on this sensor. This paper presents, as an example, the performance enhancement of a Neato XV-11 Laser Scanner applied to mobile robot self-localization, being used as case study the Perfect Match Algorithm applied to the Robot@Factory competition.

Welding process automation of aluminum alloys for the transport industry: An Industrial Robotics Approach

July,2 15:25 Control in Robotic Applications

João Ribeiro¹, José Gonçalves² and Nuno Mineiro³

¹CIMO & Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal ²Instituto Politécnico de Bragança & CeDRI, Portugal ³Roboplan, R. da Paz 292, 3800-587 Cacia, Portugal

The materials used in the transport industry have been changing in the last decades. The traditional and heavy steel have been switching by the light alloys like aluminum alloys. However, despite their advantages as low density and high corrosion resistance, the manufacturing process, especially fusion welding, is very demanding and challenging. In the transport industry, most of the hyperstatic components made in aluminum alloys are welded manually with the associate financial costs as well as the lack of quality and repeatability. For these reasons, it is urgent to develop new methodologies to automate this process. The present work intends to show a scientific method to automate the welding process of hyperstatic frames, very common in bicycles, made in aluminum alloy. This methodology involves two steps, the first one in which is performed numerical simulations to determine the optimal welding parameters to minimize the distortion and residual stresses. The second step is experimental one, and it is created an automated welding cell with a robot to weld the frames. It has been proved that it is possible to obtain welding aluminum frames with acceptable quality in agreement with the ASME IX standard.

Control in Robotic Applications

July,2 15:05

A DOBOT Manipulator Simulation Environment for Teaching Aim with Forward and Inverse Kinematics

July,2 15:45 Control in Robotic Applications

July,2 16:05 Control in Robotic Applications Thadeu Brito¹, José Lima^{1,2}, João Braun³, Luis Piardi¹ and Paulo Costa^{2,4}

¹Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal ²INESC TEC - INESC Technology and Science, Porto, Portugal ³Federal University of Technology - Paraná, Toledo, Brazil

⁴Faculty of Engineering of University of Porto, Porto, Portugal

Industrial Manipulators were becoming used more and more at industries since the third industrial revolution. Actually, with the fourth one, the paradigm is changing, and the collaborative robots are being accepted for the community. It means that smaller manipulators with more functionalities have been used and installed. New approaches have appeared to teach students according to the new robot's capabilities. The DOBOT robot is an example of that since it captivates the student's attention with an uncomplicated programming front-end, tools, grippers and extremely useful for teaching STEM. This paper proposes a simulation environment that can be used to teach, test and validate solutions to the DOBOT robot. By this way, the student can try and validate, at their homework without the real robot, the developed solutions and further test them at the laboratory with the real robot. Currently, remote testing and validation without the use of a real robot is an advantage. The comparison of the provided simulation environment and the real robot is presented in the approach.

Using Multi-UAV for Rescue Environment Mapping: Task Planning Optimization Approach

Ricardo Rosa^{1,5}, Thadeu Brito², Ana I. Pereira^{2,3}, José Lima^{2,4} and Marco A. Wehrmeister⁵

¹Federal Institute of Education, Science and Technology - Paraná, Cascavel, Brazil
²Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
³Algoritmi Center, University of Minho, 4710-057 Braga, Portugal
⁴INESC Technology and Science, Porto
⁵Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil

The difficulty of rescuing people trapped in the rubble is usually due to the rescue teams being unaware of the environment or unable to identify where the survivors are. Using UAVs to map the environment, and also to get remote information, may benefit the rescue task as a whole. This work proposes a multi-UAVs planning system for indoor mapping environments that have been affected by a natural disaster. Such an approach is inspired by how the honey bees build their hive. Multiple UAVs navigate and explore the unstructured indoor environment in the same way the bees build a honeycomb. Thus, the various UAVs must explore coordinately to map the environment in the shortest time whereas travelling the smallest distance. Three strategies were evaluated in a simulation environment. The results indicate the feasibility of the proposed approach and point to an improvement in the environment mapping.

Extrinsic Sensor Calibration Methods for Mobile Robots: A Short Review

Ricardo B. Sousa¹, Marcelo R. Petry² and António Paulo Moreira^{1,2}

¹Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

 $^2\mathrm{INESC}$ TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Porto, Portugal

Data acquisition is a critical task for localisation and perception of mobile robots. It is necessary to compute the relative pose between onboard sensors to process the data in a common frame. Thus, extrinsic calibration computes the sensor's relative pose improving data consistency between them. This paper performs a literature review on extrinsic sensor calibration methods prioritising the most recent ones. The sensors types considered were laser scanners, cameras and IMUs. It was found methods for robot-laser, laser-laser, laser-camera, robot-camera, cameracamera, camera-IMU, IMU-IMU and laser-IMU calibration. The analysed methods allow the full calibration of a sensory system composed of lasers, cameras and IMUs.

Dynamic Model for the pH in a Raceway Reactor using Deep Learning techniques

Pablo Otálora¹, José Luis Guzmán¹, Manuel Berenguel¹, Francisco Gabriel Acién²

¹Department of Informatics, University of Almería, Ctra. Sacramento s/n,ceiA3, CIESOL, 04120 Almería, España

²Department of Chemical Engineering, University of Almería, Ctra. Sacramento s/n,ceiA3, CIESOL, 04120 Almería, España

This paper presents a black-box dynamic model for microalgae production in raceway reactors. The black-box model, developed using Deep Learning techniques, allows the estimation of the pH in a 100 m2 raceway reactor. The model has been created using only and exclusively data, what gives a high ease of use. The results obtained verify the effectiveness of this type of techniques for the modelling of complex dynamic processes. The model was validated for different weather conditions obtaining satisfactory results. Thus, the obtained model is fairly useful for simulation purposes or for the implementation of model-based control techniques.

July,2 15:05 Soft Computing Applied to Control

July,2 16:25 Control in Robotic Applications

A Fuzzy based model to assess the influence of project risk on corporate behavior

July,2 15:25 Soft Computing Applied to Contro

Ricardo Santos^{1,2}, António Abreu^{2,3}, J.M.F. Calado^{2,4}, José Miguel Soares⁵, José Duarte Moleiro Martins⁶ and Vitor Anes^{2,4}

¹GOVCOPP - University of Aveiro, Portugal

²ISEL- Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa

³CTS Uninova, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

⁴IDMEC-IST-UL, Lisboa, Portugal

⁵ADVANCE - Centro de Investigação Avançada em Gestão do ISEG ISEG - Lisbon School of Economics and

Management, Universidade de Lisboa, Portugal

⁶ISCAL - Instituto Politécnico de Lisboa (ISCAL), Instituto Universitário de Lisboa (ISCTE-IUL), Business Research Unit (BRU-IUL), Lisboa, Portugal

Nowadays, the competitiveness on industry, requires a good preparation from the organizations, considering all events that may occur, which brings new challeng-es for the corporation's management. To address such challenges, risk manage-ment's models have been used to give a sense of threat prevention, by assessing each project's risk and the risk from the corporation itself as well. However, such models are normally based on human perception, which brings some subjectivity around the risks involved, making their definition less accurate. Additionally, there is a lack of models that allows to better define the corpora-tion's risk, by exploring the influence from the risk's project. To address these issues, this paper presents an approach, supported by fuzzy log-ic, to analyze the risk's level in an organization, by considering the influence of their projects. A case study will be used to assess the model robustness and to discuss the benefits and challenges found.

Decentralized Control for Multi-Agent Missions based on Flocking Rules July,2 15:45 Soft Computing Applied to Contro

Rafael Ribeiro¹, Daniel Silvestre² and Carlos Silvestre²

¹Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal ²Department of Electrical and Computer Engineering of the Faculty of Science and Technology of the University of Macau, Macau, China

This paper addresses the problem of having a multi-agent system converging to multiple dynamic rendezvous areas for networks of agents with no localization sensors and limited communication capabilities. The localization is performed by measurement/communication towers that determine the noisy position and velocity of each relevant agent and transmit them using a directional antenna. There is no assumption on the connectedness of the network topology, which is unknown to all agents. The proposed solution consists of an improved flocking-based movement algorithm tailored to the proposed scenario, with mechanisms to prevent collisions. The performance of the solution is presented through multiple simulations for a multitude of environments. By an appropriate selection of an utility function, these empirical results hint to the possibility of realizing different types of missions intended for multi-agent systems using swarm behavior.

Classification of Car Parts using Deep Neural Network

Salik Ram Khanal¹, Eurico Vasco Amorim^{1,2} and Vitor Filipe^{1,2}

¹School of Science and Technology, Universidade de Trás-os-Montes e Alto Douro 5000-801, Vila Real, Portugal ²INESC TEC – Institute for Systems and Computer Engineering, Technology and Science 4200-465, Porto, Portugal

Quality automobile inspection is one of the critical application areas to achieve better quality at low cost and can be obtained with the advance computer vision technology. Whether for the quality inspection or the automatic assembly of automobile parts, automatic recognition of automobile parts plays an important role. In this article, vehicle parts are classified using deep neural network architecture designed based on ConvNet. The public dataset available in CompCars [1] were used to train and test a VGG16 deep learning architecture with a fully connected output layer of 8 neurons. The dataset has 20,439 RGB images of eight interior and exterior car parts taken from the front view. The dataset was first separated for training and testing purposes, and again training dataset was divided into training and validation purposes. The architecture was trained in 50 epochs with a batch size of 32. The average accuracy of 93.75% and the highest accuracy of 97.2% of individual parts recognition were obtained.

Control of bio-inspired multi-robots through gestures using convolutional neural networks in simulated environment

A.A. Saraiva^{2,6}, D.B.S. Santos¹, N.M. Fonseca Ferreira^{3,4,5} and J. Boaventura-Cunha^{2,5}

July,2 16:25 Soft Computing Applied to Control

 ¹UESPI-University of State Piaui, Piripiri, Brazil
 ²University of Trás-os-Montes and Alto Douro,Vila Real, Portugal
 ³Coimbra Polytechnic - ISEC, Coimbra, Portugal
 ⁴Knowledge Engineering and Decision-Support Research Center (GECAD) of the Institute of Engineering, Polytechnic Institute of Porto
 ⁵INESC-TEC Technology and Science, Porto, Portugal
 ⁶University of Sao Paulo Sao Carlos - Brazil

In this paper the comparison between three convolutional neural networks, used for the control of bio-inspired multi-robots in a simulated environment, is performed through manual gestures captured in real time by a webcam. The neural networks are: VGG19, GoogLeNet and Alexnet. For the training of networks and control of robots, six gestures were used, each gesture corresponding to one action, collective and individual actions were defined, the simulation contains four bio-inspired robots. In this work the performance of the networks in the classification of gestures to control robots is compared. They proved to be efficient in the classification and control of agents, with Alexnet achieving an accuracy of 98.33%, VGG19 98.06% e Googlelenet 96.94%.

July,2 16:05 Soft Computing Applied to Control

Study on the isolator-structure interaction. Influence on the supporting structure

July,2 17:25 Control of Smart Structures

J. Pérez-Aracil¹, E. Pereira², I. M. Díaz³ and P. Reynolds¹

 $^1 \rm Vibration$ Engineering Section, College of Engineering, Mathematics and Physical Sciences, North Park Road, Exeter EX4 4 PY, United Kingdom,

²Department of Signal Processing and Communications, Universidad de Alcalá, ES 28805, Alcalá de Henares, Madrid, Spain

³E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, ES 28040, Madrid, Spain

Vibration isolation techniques allow to reduce the base movement transmitted to the platform to be isolated. There are different techniques that can be applied, but in most scenarios, the most suitable control system is active vibration isolation. This implies to apply an active force on the platform, and hence on the supporting structure. Some applications can consider the base structure as an infinitely rigid system, however the possibility of developing different task on the supporting structure such as: human activities or different isolators, lead to study how the active vibration isolation affects the base response. In this work, the general vibration isolation scenario is presented and the influence of the active vibration isolation on the supporting structure response is analysed and compared with the effect of the passive vibration isolation technique.

A comparative performance study of inertial vibration controllers for an ultra-lightweight GFRP footbridge

July,2 17:45 Control of Smart Structures

C.M.C. Renedo¹, J.M. Soria¹, C. Gallegos¹, Iván M. Díaz¹ and J. Jiménez-Alonso¹

¹ETSICCP, Universidad Politécnica de Madrid, 28040, Spain

Currently, the use of advanced lightweight materials in construction (as aluminum or fiberreinforced polymer (FRP) composites) are enabling to create aesthetically pleasing structural forms through reducing their weight as much as possible. The results of this are ultra-lightweight structures (usually with low mass and inherent damping) which difficultly comply with the vibration serviceability limit state (VSLS) under human-induced dynamic loading. Moreover, when assessing VSLS, the existing human-structure interaction (HIS) should be considered as it tends to be remarkable. Hence, smart damping strategies can be seen as a good solution to preserve the lightweight nature of these structures in the most efficient way. This work aims to investigate whether the efficiency of three types of inertial controllers applied to an ultralightweight FRP footbridge degrades or not when considering the HSI as another inherent element of the dynamic system to be controlled.

Mitigation of earthquake-induced structural pounding between adjoining buildings – State-of-the-art

July,2 18:05 Control of Smart Structures

Pedro Folhento¹, Rui Barros¹ and Manuel Braz-César²

 $^1{\rm Faculty}$ of Engineering of the University of Porto $^2{\rm Polytechnic Institute}$ of Bragança

The investigation of collisions between contiguous building structures due to severe earthquakes is of great importance, particularly in large cities where there is a high population density. These collisions will produce strong impact forces that will significantly influence the dynamic behavior of building structures. Moreover, these impacts may provoke serious structural damage, that can lead to local collapse, or in the worst-case scenario to complete structural collapse. Different measures and techniques in mitigating pounding effects between adjacent buildings during seismic hazard events were extensively developed and studied by several researchers in recent years. This study presents an overview of these different pounding mitigation solutions, namely regarding the required separation seismic gap, link elements, shock absorber devices, structure stiffening, and supplemental energy and control devices. The main conclusions of several researches, from pioneer to state-of-the-art studies, concerning code provisions for minimum gap sizes and solutions for pounding mitigation between buildings, are compiled and presented in this study to demonstrate its diversity, effectiveness and practical applications.

Dynamic Survey of a Telecommunication Tower by Interferometric Radar Technique

July,2 18:25 Control of Smart Structures

F. Paiva¹, R.C. Barros², J. Henriques³, T. Cunha³, P. Feyfant⁴

¹Instituto Superior Técnico, University of Lisbon, Portugal ²Faculty of Engineering, University of Porto, Porto, Portugal ³BSSE, Porto, Portugal ⁴ITAS Pylônes, France

The dynamic behavior (in terms of resonant frequencies and modal damping ratios) of a Telecommunication Tower located in France is studied using an Interferometric Radar (IR). The tower under investigation suffers from a dynamic instability phenomenon, designated as vortex shedding that induce large lateral vibration on the tower. As a possible solution for vortex shedding phenomena a Tuned Liquid Damper (TLD) device was developed and installed, with the purpose of mitigating the vibrations by adding damping into the system. From the investigation conducted and with the help of modal identification techniques in the frequency and time domain, some conclusions can be drawn in terms of modal estimation parameters for the Telecommunication Tower before and after TLD implementation. In both the TLD stages it was possible to identify the frequencies for the first two global modes of the tower, with a positive degree of certainty. The same statement cannot be asserted for the modal damping ratio. The time domain technique (SSI-UPC method), applied in this work to estimate the damping ratio, has displayed a high variability. Factors like duration of the measurements, number of output sensors considered, spectral range and others related with specific parameters of the method, affected significantly the values achieved. The weak ambient excitation during the dynamic survey also limited the reliability of the modal damping ratio estimates. The TLD implementation affected the structure in two ways: by reducing the first frequency from 0.960 Hz to 0.823 Hz; and through the increased energy dissipation in the system, where a more evident effect in the structure first mode was also detected.

Motion-based Design of Semi-Active Tuned Mass Dampers to Control Pedestrian-Induced Vibrations in Footbridges under Uncertainty Conditions July 2 18:45

18:45 Control of Smart Structures

Javier Fernando Jiménez-Alonso¹, José Manuel Soria Herrera¹, Carlos Martín de la Concha $\rm Renedo^1$ and Francisco Guillen-González²

¹Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Madrid, Madrid 28040, Spain
²Facultad de Matemáticas. Universidad de Sevilla, Sevilla 41012, Spain

Modern slender footbridges are sensitive to pedestrian-induced vibrations together with the uncertainty associated with the variation of the operational and environmental conditions. In order to overcome these limitations, semi-active damping devices have been widely employed due to their adequate balancebetween their effectiveness and their cost when they are used to control the pedestrian-induced vibrations in footbridges. Different design methods have been proposed to guarantee that the footbridges, controlled by these damping devices, meet the vibration serviceability limit state without compromising their budget. Among these proposals, the motion-based design method has shown a high performance when it has been implemented to design passive damping devices for footbridges. Herein, the motion-based design method under uncertainty conditions has been adapted and further implemented for the robust optimum design of semiactive tuned mass dampers when they are employed to control the pedestrian-induced vibrations in slender footbridges. According to this method, the design problem can be transformed into two sub-problems: (i) a multi-objective optimization sub-problem; and (ii) a reliability analysis sub-problem. Thus, its main objective is to find the parameters of the semi-active damping device which guarantee an adequate comfort level without compromising its cost. In order to take into account the effect of the modification of the structural modal properties associated with the variation of the operational and environmental conditions, the compliance of the design requirements has been formulated via a reliability index. Therefore, a reliability analysis must be performed to assess the probability of failure associated with the abovementioned serviceability limit state.

 $_{\rm July,2}_{\rm 17:25}$ Cooperative circumnavigation for a mobile target using adaptive estimation $_{\rm Robotics}$

Joana Fonseca¹, Jieqiang Wei², Tor A. Johansen³, and Karl H. Johansson¹

¹KTH Royal Institute of Technology, Stockholm, Sweden ²Ericsson, Stockholm, Sweden ³Norwegian University of Science and Technology, Trondheim, Norway

In this paper we consider the problem of tracking a mobile target using adaptive estimation while circumnavigating it with a system of Unmanned Surface Vehicles (USVs). The mobile target considered is an irregular dynamic shape approximated by a circle with moving centre and varying radius. The USV system is composed of n USVs of which one is equipped with an Unmanned Aerial Vehicle (UAV) capable of measuring both the distance to the boundary of the target and to its centre. This USV equipped with the UAV uses adaptive estimation to calculate the location and size of the mobile target. The USV system must circumnavigate the boundary of the target while forming a regular polygon. We design two algorithms: One for the adaptive estimation of the target using the UAV's measurements and another for the control protocol to be applied by all USVs in their navigation. The convergence of both algorithms to the desired state is proved up to a limit bound. Two simulated examples are provided to verify the performance of the algorithms designed in this paper.

Cloud-Based Framework for Robot operation in Hospital Environments

NM Fonseca Ferreira¹ and J. Boaventura-Cunha^{2,3}

¹Coimbra Polytechnic – ISEC, Portugal
²University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
³INESC TEC – Campus da FEUP, Porto, Portugal

The robotics field is widely used in the industrial domain, but nowadays several other domains could also take advantage of it. This interdisciplinary branch of engineering requires the use of human interfaces, efficient communication systems, high storage and processing capabilities, among other issues, to perform complex tasks. This paper aims to propose a cloud-based framework platform for robot operation in a hospital environment, addressing some challenges, such as communications security and processing/storage features. The recent developments in the artificial intelligence field and cloud resources sharing are allowing the penetration of robots in unstructured environments. However, some new challenges and solutions need to be tested in real environments. Our main contribution is to decrease the time-consumption related to processing and storage costs, associated with the physical processing resources of the robots. Also, the proposed methods provide an increase of the processing variables that are not yet present in the physical resources, such as in the case of robots with limited processing time or storage capabilities. This paper presents a platform based on Cloud Computing with services to support processing, storage and analytics applied to hospital environments. The proposed platform enables to achieve a decrease in the time-consumption, especially when it is intended to retrieve information about all robot activities.

On the Use of a Maximum Correntropy Criterion in Kalman Filtering Based Strategies for Robot Localization and Mapping

July,2 18:05 Robotics

Matheus F. Reis¹, Hamed Moayyed¹ and A. Pedro Aguiar¹

¹Department of Electrical and Computer Engineering Faculty of Engineering, University of Porto

One of the applications of the Kalman filter in the field of robotics is to solve the problem of Simultaneous Localization and Mapping (SLAM). The main drawback of the Kalman filter is that its performance can degrade in the presence of non-Gaussian measurement noise. In robotic systems using laser range finders such as the LiDAR, often optical properties of the beamenvironment interaction introduce non-Gaussian noise into the system, which can significantly affect performance. In this paper, we investigate this problem and propose a SLAM algorithm using an Extended Kalman filter based on the Maximum Correntropy Criteria (MCC), which aims to exhibit better performance than the classical Extended Kalman filter for some types of non-Gaussian noises. The performance of the proposed MCC-EKF SLAM and the classical EKF SLAM are compared by means of numerical simulations.

Vision-Based Object Detection and Localization for Autonomous Airborne Payload Delivery

July,2 18:25 Robotics

James Sewell¹, Theo van Niekerk¹, Russell Phillips¹, Paul Mooney ¹and Riaan Stopforth²

¹Nelson Mandela University, Port Elizabeth, Eastern Cape, South Africa ²University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa

This paper follows the development of a vision-based object detection and localization system for implementation in an autonomous aircraft for payload delivery. Application of such a system could see use in the delivery of packages to offshore freighter ships and inaccessible inland areas. This system was developed in a modular fashion, such that it could be interchanged and adapted between various airframes. This system comprised of three core elements, namely autonomous flight control, vision-based object detection and localization and payload release and delivery modelling. The final integrated system was tested and was able to achieve fully autonomous flight and was able to model a payload release trajectory from an altitude of 75 m to deliver the given payload with an average displacement of 1.8 m of the designated drop-zone. The drop-zone location was determined via the onboard vision system through the implementation of an object detection and localization algorithm.

LMI-based Sliding Mode Controller Design for an Uncertain Single-Link Flexible Robot Manipulator

July,2 18:45 Robotics

José Manuel Andrade¹ and Christopher Edwards²

¹University of Derby, College of Engineering & Technology, Department of Electronics, Computing and Mathematics, Markeaton St., Derby, DE22 3AW, UK

²University of Exeter, College of Engineering, Mathematics and Physical Sciences, North Park Road, Exeter, EX4 4QF, UK

A conventional (first order) sliding mode controller (SMC) is applied to an uncertain planar single-link flexible robot arm in the context of the regulator problem (disturbance rejection). The planar single-link flexible robot arm exhibits nonlinearities and uncertainties associated with Coulomb's friction, the payload, and viscous friction. A SMC design framework that takes into account matched and mismatched uncertainties is proposed in this paper. The design methodology involves linear matrix inequality (LMI) methods and polytopic models of the uncertain planar single-link flexible robot arm. Computer simulation results demonstrate the effectiveness of the proposed sliding mode approach.

LSLOCK: A Method to Estimate State Space Model by Spatiotemporal Continuity

Tsuyoshi Ishizone¹ and Kazuyuki Nakamura^{1,2}

 $^1\mathrm{Meiji}$ University, 4-21-1 Nakano, Nakano-ku, Tokyo, Japan $^2\mathrm{JST},$ PRESTO

Model estimation from spatio-temporal data is important topic since it helps us to extract useful information from big data in recent years. In this paper, we introduce an estimation algorithm of the linear Gaussian state space model with focusing on the real-time property. The proposed algorithm uses two key ideas, localization and spatial uniformity, to reduce the number of the parameters. Thanks to this, we obtain stable method to estimate the parameters regarding state transition and states. In addition, the proposed algorithm is quicker and more accurate than existing methods, therefore, it suffices the requirement of the rapid response for the alternation of the fields.

Nonlinear Data - Theory & Applications III

11:05

A decentralized strategy for variational collision avoidance on complete Riemannian manifolds

July,3 11:25 Nonlinear Data - Theory & Applications III

Leonardo J. Colombo¹ and Jacob R. Goodman¹

¹Institute of Mathematical Sciences (ICMAT) Calle Nicolás Cabrera 13-15, Campus Cantoblanco, 28049, Madrid, Spain

We introduce a variational approach for decentralized collision avoidance of multiple agents evolving on a Riemannian manifold, and we derive necessary conditions for extremal. The problem consists of finding non-intersecting trajectories of a given number of agents sharing only the information of relative positions with respect to their nearest neighbors, among a set of admissible curves, such that these trajectories are minimizers of an energy functional. The energy functional depends on covariant acceleration and an artificial potential used to prevent collision among the agents. We show the global existence of extrema for the energy functional. We apply the results to the case of agents on a compact and connected Lie group. Simulation results are shown to demonstrate the applicability of the results.

Endpoint Geodesics on the Set of Positive Definite Real Matrices

Maximilian Stegemeyer¹ and Knut Hüper²

¹Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig, Germany ²Institute for Mathematics, Julius-Maximilians-Universität Würzburg, Germany

In this paper we study the endpoint geodesics problem on the differentiable manifold of real positive definite matrices. The objective is to connect two points given as initial data on that space by a unique geodesic. We first recall partially well known facts about the differential geometry of this manifold. Then we consider further features, namely the property of being an extrinsic symmetric space together with associated Riemannian isometries. This paper is essentially self-contained and therefore accessible to a wide audience.

July,3 11:45 Nonlinear Data - Theory & Applications III
Accelerated Generalized Correntropy Interior Point Method in Power System State Estimation

July,3 12:05 Nonlinear Data - Theory & Applications III

Hamed Moayyed¹, Diyako Ghaderyan¹, Yassine Boukili¹ and A. Pedro Aguiar¹

¹Faculty of Engineering, University of Porto, Porto, Portugal

Classical Weighted Least Squares (WLS) is a well-known and broadly applicable method in many state estimation problems. In power system networks, WLS is particularly used because of its stability and reliability in the cases that measurement noise are Gaussian. Nowadays, with the use of renewable energy sources and the migration to smart grids WLS is no more appropriate because the noises are far from being Gaussian. Recently, a novel state estimation algorithm denoted Generalized Correntropy Interior-Point method (GCIP) was presented that can deal with measurements contaminated by gross errors. In that conditions, the superiority of GCIP is conrmed in a variety of tests. This paper presents an improved GCIP in terms of computational eciency. The main computational burden of GCIP arises from a large dimension matrix of the correction equation. By looking into the structure of the data, a new arrangement for this matrix with lower order is presented that helps to reduce computational time remarkably. The eciency of new method was tested with different IEEE benchmark.

Calibration-free HCPV sun tracking strategy

July,3 11:05 Solar Energy and Agriculture

Manuel G. Satué¹, Manuel G. Ortega¹, Fernando Castaño¹, Francisco R. Rubio¹ and José M. Fornés¹

¹Escuela Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain

When using high concentration photovoltaics modules, sun trackers must meet severe specifications in order to keep sun pointing error within a very small angle. Those required specifications are not only mechanical (misalignments in the structure itself, clearances of the joints, etc.) but also regards the installation (misalignments of the platform with respect to geographical north). These uncertainties are error sources that make necessary to calibrate the system after installation and possibly recalibrate it from time to time because of aging. This paper presents a control strategy that avoids the necessity of any kind of calibration by using, indirectly, the produced electric power as feedback. The control strategy is valid as far as the sun tracker is able to perform movements in the azimuth and elevation coordinates independently. Experimental results with a two axes solar tracker are exposed showing the validity of the proposed control strategy under sunny conditions.

Assessment of the nutritional state for olive trees using UAVs

11:25 Solar Energy and Agriculture

July, 3

P. Cano Marchal¹, D. Martínez Gila¹, S. Illana Rico², J. Gómez Ortega¹, J. Gámez García¹

¹Robotics, Automation and Computer Vision Group. University of Jaén, Spain ²Integración Sensorial y Robótica, Spain

This work presents the prediction of nutritional state for olive trees based on multispectral information gathered by a camera mounted on an Unmanned Aerial Vehicle (UAV). The results show that this data gathering technique is very promising for this application. The models were constructed using support vector machines for regression with a gaussian kernel and five-fold validation, and provided Mean Absolute Errors (MAE) around 15% for all the nutrients considered, and particularly satisfactory results for N, K, Ca, Mg and B.

CDM Controller Design of a Grid Connected Photovoltaic System

July,3 11:45 Solar Energy and Agriculture

Jo~ao Paulo Coelho¹, Wojciech Giernacki², José Gonçalves¹ and José Boaventura-Cunha^{3,4}

¹Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

²Institute of Control and Information Engineering, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland

³Universidade de Trás-os-Montes e Alto Douro, Escola de Ciências e Tecnologia, Vila Real, Portugal ⁴INESC TEC Technology and Science, Campus da FEUP, 4200 - 465 Porto, Portugal

Distributed power sources will become increasingly ubiquitous in the near future. In this power production paradigm photovoltaic conversion systems will play a fundamental role. The crescent tendency of energy price, and an opposed trend for the photovoltaic components price, will lead to a crescent pressure to the installation of this particular renewable energy source in home buildings. In particular on-grid photovoltaic systems where the generated power is injected directly to the main power grid. This strategy requires the use of DC-AC inverters whose output is synchronised in phase with the main grid voltage. In order to provide steady output in the presence of load disturbances the inverter works in closed-loop. This work presents a new way to design an inverter controller by means of the CDM design technique. The obtained results suggest that the controller obtained with this method lead to a robust closed-loop system. July,3 12:05 Solar Energy and Agriculture Soiling Monitoring Modelling for Photovoltaic System

Vitor H. Pagani^{1,2}, Nelson A. Los^{1,2}, Wellington Maidana¹, Paulo Leitão¹, Marcio M. Casaro² and Claudinor B. Nascimento²

¹Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança,Campus de Santa Apolónia, 5300-253 Bragança, Portugal ²Universidade Tecnológica Federal do Paraná, Campus de Ponta Grossa, PR, Brasil

Soiling on photovoltaic panels is a factor that has a significant impact on photovoltaic production. The monitoring of the soiling index appears as a relevant alternative for maintenance of solar systems. This work proposes a soiling index modelling for photovoltaic systems, based on two input variables: solar radiation and current generated, providing a simple, programmable and reliable way to check the efficiency and establish parameters for cleaning the system. The study performed was based on the adaptation of the modelling, mathematical experimentation of the model presented and the comparison between the system presented with the PVSyst software, for validation of the proposed system. From the validation, was proposed to establish an optimal point for cleaning. Was found that, despite the developed system using only two input variables, it presented a low relative error of 2.07% when compared to the software. From the results obtained, we can conclude that the presented modelling system is valid, and presents excellent reliability, having vast applicability in the monitoring of solar producers of any model or size.

The numerical control of the motion of a passive particle in a point vortex flow

July,3 17:25 Control in Point Vortex Dynamics

Carlos Balsa¹ and Sílvio M. Gama²

¹Research Centre in Digitalization and Intelligent Robotics (CeDRI) - Instituto Politécnico de Bragança, Bragança, Portugal
²CMUP - Centro de Matemática da Universidade do Porto, Porto, Portugal

This work reports numerical explorations in the advection of one passive tracer by point vortices living in the unbounded plane. The main objective is to find the energy-optimal displacement of one passive particle (point vortex with zero circulation) surrounded by N point vortices. The direct formulation of the corresponding control problems is presented for the case of N = 1, N = 2, N = 3 and N = 4 vortices. The restrictions are due to (i) the ordinary differential equations that govern the displacement of the passive particle around the point vortices, (ii) the available time T to go from the initial position z0 to the final destination zf; and (iii) the maximum absolute value umax that is imposed on the control variables. The resulting optimization problems are solved numerically. The numerical results show the existence of nearly/quasi-optimal control.

Minimum energy control of passive tracers advection in point vortices flow

Carlos Balsa¹, Olivier Cots², Joseph Gergaud² and Boris Wembe²

¹Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal ¹Toulouse Univ. INP-ENSEEIHT-IRIT, UMR CNRS 5505, 2 rue Camichel, 31071 Toulouse, France

In this work we are interested in controlling the displacement of particles in interaction with N-point vortices, in a two-dimensional fluid and neglecting the viscous diffusion. We want to drive a passive particle from an initial point to a final point, both given priori, in a given finite time, the control being due to the possibility of impulsionin any direction of the plane. For the energy cost, the candidates assimimizers are given by the normal extremals of the Pontryagin Maximum Principle (PMP). The transcription of the PMP gives us a set of nonlinear equations to solve, the so-called shooting equations. We introduce these shooting equations and present numerical computations in the cases of N=1,2,3 and 4 point vortices. In the integrable case N=1, we give complete quadratures of the normal extremals.

Passive Particle Dynamics in Viscous Vortex Flow

Gil Marques¹, Maria João Rodrigues^{1,2} and Sílvio Gama^{1,2}

 $^1{\rm Faculdade}$ de Ciências, Universidade do Porto, Porto, Portugal $^2{\rm Centro}$ de Matemática, Universidade do Porto, Porto, Portugal

We focus on the description of point vortices both in inviscid and viscous environments and try to extend the idea of quantification of chaos in inviscid vortex systems of Babiano et al. to viscous environments. In particular, we notice that viscosity can disrupt stable dynamics and cause initially stable trajectories to go through chaotic behavior, before succumbing to viscosity completely. We also find that the logarithms of the duration of this chaotic behavior and the kinematic viscosity coefficient seem to be connected by a linear relationship. Most approaches to control of point vortices don't take viscosity into account. This should not be what one expects from most real fluids. As such, it is important to take viscosity into account to try to obtain better descriptions and solutions of real world problems.

Optimal route planning in steady planar convective flows

Roman Chertovskih¹, Maxim Staritsyn¹, and Fernando Lobo Pereira¹

¹Research Center for Systems and Technologies (SYSTEC), Faculdade de Engenharia, Universidade do Porto, Portugal

We consider the following optimal control problem with state constraints: find optimal route between two given points in a planar steady convective flow. The cost function is a weighted sum of the total travelling time and the energy spent by the controller. The optimal control problem is solved numerically by using an indirect method based on Pontryagin's Maximum Principle in the Gamkrelidze's form. Optimal routes are computed and discussed for three examples of convective flows.

July,3 17:45 Control in Point Vortex Dynamics

July,3 18:05 Control in Point Vortex Dynamics

July,3 18:25 Control in Point Vortex Dynamics

July,3 17:25 Modelling

Identification and Control of Precalciner in the Cement Plant

Jakub Osmic¹, Emir Omerdic², Edin Imsirovic², Tima O. Smajlovic² and Edin Omerdic³

¹University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina ²Cement Factory Lukavac, 75300 Lukavac, Bosnia and Herzegovina ³University of Limerick, Limerick, Ireland

Identification and control of precalciner in the cement production process with the increased use of alternative fuels is presented in this paper. The model of the system consists of the precalciner model as well as of pulverized coal transport model and alternative fuel transport model. The manipulated variable in the precalciner system is pulverized coal, while the alternative fuel calorific value change and the alternative fuel mass flow change are the main disturbances. Outputs of the precalciner model are the precalciner output gas temperature, as a controlled variable, and concentration of CO as measured variable. During the identification process, raw meal mass flow and primary secondary and tertiary air flows are considered to be constant. Based on identified model of the precalciner and the fuel transport model, the mixed logical dynamical controller is designed and implemented at Cement Factory Lukavac (Bosnia and Herzegovina). The mixed logical dynamical controller is realized on the cRIO 9014 real-time controller using LabVIEW (G) programming language. The real-time responses indicate improvements in precalciner temperature control while keeping reasonable low frequency and intensity of CO peaks.

Control of the depth of anesthesia using a new model for the action of propofol and remifentanil on the BIS level

Jorge Silva¹, Teresa Mendonça² and Paula Rocha³

¹Faculdade de Engenharia da Universidade do Porto (FEUP) and Research Center for Systems and Technologies (SYSTEC), Rua Dr. Roberto Frias, 4200-465 Porto
²Faculadade de Ciências da Universidade do Porto (FCUP) and Research Center for Systems and Technologies (SYSTEC), Rua do Campo Alegre, 4169-007 Porto
³Faculdade de Engenharia da Universidade do Porto (FEUP) and Research Center for Systems and Technologies (SYSTEC), Rua Dr. Roberto Frias, 4200-465 Porto

This paper presents a simple individualized open-loop con- trol scheme for the automatic delivery of anesthetics in order to achieve and maintain a desired depth of anesthesia. This control scheme is based on a new model for the action of the hypnotic propofol and the analgesic remifentanil, that is more suitable for parameter identification accord- ing to the usual clinical practice. The model parameters are estimated on-line (with a short estimation time), allowing a quick tuning of the controller.

Model of a DC Motor with Worm Gearbox

Vítor H. Pinto^{1,3}, José Gonçalves² and Paulo Costa^{1,3}

¹FEUP - University of Porto, Faculty of Engineering Porto, Portugal

²IPB - Polytechnic Institute of Bragança, Bragança, Portugal

³INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, CRIIS - Centre for

Robotics in Industry and Intelligent Systems, Porto, Portugal

In this paper, the modeling of a Non-Linear system based on a DC Motor with Worm Gearbox coupled to an Elastic Joint is presented. Worm gearboxes are typically applied when its compactness is an important factor, as well as an orthogonal redirectioning is required. One of the greatest advantages of worm gears is its unique self-locking characteristic. This means that the gear can only rotate by its input side, and cannot be actuated through the load side. Using a DC motor with a worm gearbox is a solution that guarantees that, for instance, i na robotic manipulator, when the arm's joint reaches a desired angle, it does not move until a next required set point. Modeling accurately this system is crucial in order to develop its control in a more efficient way.

Modeling of an Elastic Joint: An Experimental Setup Approach

Vítor H. Pinto^{1,3}, José Lima², José Gonçalves² and Paulo Costa^{1,3}

 ¹FEUP - University of Porto, Faculty of Engineering Porto, Portugal
 ²IPB - Polytechnic Institute of Bragança, Bragança, Portugal
 ³INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, CRIIS - Centre for Robotics in Industry and Intelligent Systems Porto, Portugal

Throughout this paper it is presented a novel elastic joint configuration, being compared with other similar joints found in recent literature. It is presented its modeling, being its estimation process developed offline, based on a proposed experimental setup. This setup enables to monitor and collect data from an absolute encoder and a load cell. Some data obtained from these sensors is then graphically represented, like angle and torque, obtaining some parameters. Finally, through an optimization process, where the error of the angle is minimized, the remaining parameters of the joint are estimated, thus obtaining a realistic model of the system.

On Control Models in the Motion Stabilization Problem of a Holonomic Mechanical System

Aleksandr Andreev¹ and Olga Peregudova¹

July,3 18:45 Modelling

¹Ulyanovsk State University, 42, Leo Tostoi str., Ulyanovsk 432017, Russia

Studies of the motion stabilization problem of a holonomic mechanical system have numerous applications in the design of the control structure of manipulators, wheeled robots, aircraft and other technical objects. For all its great importance and relevance, the problem of substantiating a simpler control structure remains the subject of many works. The paper suggests a new control model that solves the motion stabilization problem. The results are achieved on the basis of the approach and methods previously used by the authors in solving the stabilization problem of given positions and steady-state motions of holonomic mechanical systems.

July,3 18:25 Modelling

July,3 18:05 Modelling

Conference Statistics

It were submitted 93 papers, being accepted 76, after being evaluated based on a total of 304 reviews. The acceptance ratio of the conference was 82 %;

The Conference has five Plenary Speakers and a MATLAB Course in the last day.

It were accepted six special sessions, with the following themes:

- Nonlinear Data Theory & Applications
- Control Engineering and Industrial Automation Education
- PID Control : Tuning, Design and Applications
- Control in Robotic Applications
- Control in Point Vortex Dynamics
- Control of Smart Structures

In this year edition lots of diversity can be found, concerning the source of the contributions, some data that shows the dimension of the International involvement can be observed in Table 4. The ideal situation would be to communicate face to face, but due to the current pandemic situation, we were forced to change the conference CONTROLO'2020 to a three day online event.

The proceedings of the conference will be published in the **Springer Lecture Notes on Electrical Engineering** that are indexed by:

- ISI Proceedings
- EI-Compendex
- SCOPUS
- MetaPress
- Springerlink

Country	Authors	submitted	Accepted	Acceptance rate	^o C members
Australia	× 1	0.33	<u> </u>	× 1	
Relgium	1 4	0,35 1.8	0,55	1 0 44	0
Bosnia and Herzegovina	4	0.8	0,8	1	0
Brazil	9	2.27	2.07	0.91	4
Canada	1	1	2,01 1	1	0
Chile	1	0.5	0.5	1	0
China	2	0.67	0.67	1	0
Ecuador	1	0,2	0,2	1	0
France	10	2,42	2,42	1	0
Germany	11	4,33	3,67	0,85	2
Hungary	0	0	0	0	1
India	2	1	0	0	0
Iran	1	0,33	0,33	1	0
Ireland	1	$0,\!2$	0,2	1	0
Italy	8	2,4	2,4	1	1
Japan	2	1	1	1	0
Norway	2	$1,\!08$	1,08	1	1
Poland	1	$0,\!25$	$0,\!25$	1	2
Portugal	104	$50,\!6$	$40,\!6$	$0,\!8$	39
Romania	2	0,7	0,7	1	1
Russia	2	1	1	1	0
Slovakia	1	1	1	1	2
Slovenia	1	$0,\!5$	$0,\!5$	1	0
South Africa	2	$1,\!33$	1	0,75	0
Spain	36	$10,\!45$	$8,\!65$	$0,\!83$	13
Sweden	4	1	1	1	1
Turkey	1	1	0	0	2
United Kingdom	7	$4,\!17$	$3,\!17$	0,76	1
United States	2	$0,\!67$	$0,\!67$	1	2

Table 4: Statistics per country.

Sponsors

Technical Sponsors

IFAC has accepted to be technical sponsor of the CONTROLO'2020 conference. Having the IFAC seal associated to this event reinforces its relevance in the automatic control landscape.

CeDRI stands for "Research Centre in Digitalization and Intelligent Robotic" and its mission is to contribute to the development, application and transfer of scientific knowledge related to robotics, intelligent systems, and information and communication technologies, in the scope of the digitalization and automation of industrial systems, strengthening the scientific and technological system.

MathWorks needs no introduction and MATLAB is one of the most used numerical computer software in the control area. We appreciate their collaboration in the course that is part of the conference program.

The **SPR** (Portuguese Robotics Society), was founded in April 2006. Their main goals are to foster education, scientific research, technological development and applications (industry and services) of robotic systems.

INSTICC is the Institute for Systems and Technologies of Information, Control and Communication, a scientific, non-profit, association whose main goals are to serve the international scientific community by promoting, developing and disseminating knowledge in the areas of information systems and technologies, control and communications.

Roboplan covers the whole range of robotic applications in the automotive, food, mold and plastic industry or even equipment for the production of renewable energy.

Regular Sponsors

Bragança is a city and municipality in north-eastern Portugal, capital of the district of Bragança, in the Trás-os-Montes region of Portugal. Points of interest in the city include, but not limited to, the *Domus Municipalis*, a beautiful and well preserved castle and a majestic cathedral.

Baixa Hotel is located in the city centre, this simple hotel is a 5-minute walk from local historical exhibitions at the Abade de Baçal Museum, a 9-minute walk from the medieval castle of Bragança.

The **Hotel S. Lázaro** is a modern hotel located near the Iberian Mask and Costume Museum. It has a bar and an international restaurant overlooking the castle.

The **Hotel Tulipa** is located in the center of Bragança, this hotel is located close to the Graça Morais Museum of Contemporary Art and the city's historic castle. It is distinguished by its traditional Portuguese food restaurant.

Author Index

A. Pedro Aguiar, 45, 46, 57, 60
A. Ruano, 42
A. Serbezov, 41
A. Visioli, 40
A.A. Saraiva, 51
Adriano Carvalho, 46
Aleksandr Andreev, 65
Ana I. Pereira, 48
Ana Teresa Campaniço, 43
and Tore Hägglund, 33
António Abreu, 50
António Paulo Moreira, 49
Armando Sousa, 42

Bertinho A. Costa, 36 Boris Wembe, 63 Bruno Cunha, 41

C. Gallegos, 52 C. Pedret, 40 C.M.C. Renedo, 52 Caio Camargo, 43 Carlos Balsa, 62, 63 Carlos Martín de la Concha Renedo, 55Carlos Silvestre, 50 Celina P. Leão, 34 Chiara Valzecchi, 38 Christian Kallies, 45 Christian Uhl, 31 Christophe Prieur, 46 Christopher Edwards, 58 Clara Ionescu, 39 Claudinor B. Nascimento, 62 Claudio Garcia1, 37 Crescenzo Pepe, 37, 38 Cristóvão Sousa, 41

D. Martínez Gila, 61 D.B.S. Santos, 51 Damir Vrančić, 41 Daniel Silvestre, 50 Diyako Ghaderyan, 60 Douglas Plaza, 39

E. Batzies, 32
E. Pereira, 52
Edin Imsirovic, 64
Edin Omerdic, 64
Eduardo Araújo, 38
Elder Hernández, 41
Emir Omerdic, 64
Emmanuel Moulay, 46
Eurico Vasco Amorim, 51

F. Paiva, 54
F. Silva Leite, 32
Fernando Castaño, 60
Fernando Lobo Pereira, 63
Filipe Ferreira, 41
Filomena Soares, 34
Francesco Cocchioni, 37, 38
Francisco Gabriel Acién, 49

Francisco Guillen-González, 55 Francisco R. Rubio, 60 Fátima Pina, 44 Fátima Silva Leite, 44, 45 Giacomo Astolfi, 37 Gil Marques, 63 Hamed Moayyed, 57, 60 I. M. Díaz, 52 Irina Markina, 31, 44 Iván M. Díaz, 34, 52 J. Boaventura Cunha, 35 J. Boaventura-Cunha, 51, 56 J. Gonçalves, 36, 47 J. Gámez García, 61 J. Gómez Ortega, 61 J. Henriques, 54 J. Jiménez-Alonso, 52 J. Pérez-Aracil, 52 J. Ribeiro, 36 J.M. Igreja, 39 J.M. Soria, 52 J.M.F. Calado, 50 Jacob R. Goodman, 59 Jaime H. García-Palacios, 34 Jakub Osmic, 64 James Sewell, 57 Javier Fernando Jiménez-Alonso, 55 Jieqiang Wei, 56 Joana Fonseca, 56 John Anthony Rossiter, 32, 35 John D. Hedengren, 35 Jorge Silva, 64 Joseph Gergaud, 63 José Boaventura-Cunha, 61 José Duarte Moleiro Martins, 50 José Gonçalves, 42, 43, 47, 61, 65 José Lima, 42, 43, 48, 65 José Luis Guzmán, 33, 49

José M. Fornés, 60 José Manuel Andrade, 58 José Manuel Soria Herrera, 55 José Miguel Soares, 50 José Ramírez-Senent, 34 João Barroso, 43 João Braun, 48 João Lemos Nabais, 38 João M. Lemos, 37, 45 João P. Belfo, 45 João Paulo Coelho, 47 João Ribeiro, 47 Jo~ao M. Lemos, 36 Jo~ao Paulo Coelho, 61 K. Bot, 42 Karl H. Johansson, 56 Kazuyuki Nakamura, 58 Knut Hüeper, 44 Knut Hüper, 59 L. Machado, 32 Laetitia Perez, 46 Laiany Brancalião, 43 Laurent Autrique, 46 Leonardo J. Colombo, 59 Lorenzo Ntogramatzidis, 44 Lorenzo Orlietti, 37 Luis Piardi, 48 M. Barbu, 40 M. Beschi, 40 M. Braz-César, 47 M. Graça Ruano, 42 M. Huba1, 41 M. Hypiusová, 41 Manuel A. Pérez Serrano, 37 Manuel Berenguel, 49 Manuel Braz-César, 53 Manuel G. Ortega, 60 Manuel G. Satué, 60 Marcelo R. Petry, 49

Marcio M. Casaro, 62 Marco A. Wehrmeister, 48 Margarida Camarinha, 45 Margarida Nabais, 37 Maria João Rodrigues, 63 Marta Leal, 33 Matheus F. Reis, 57 Mauricio Godov Molina1, 31 Maxim Staritsyn, 63 Maximilian Stegemeyer, 59 Miguel Ayala Botto, 38 Mohamed Ibrahim, 45 Monika Warmuth, 31 Moritz Kern, 31 Muhammad Saleheen Aftab, 32 N.M. Fonseca Ferreira, 51 Nelson A. Los, 62 NM Fonseca Ferreira, 56 Nuno Mineiro, 47 Olga Peregudova, 65 Olivier Cots, 63 P. B. de Moura Oliveira, 35, 41 P. Cano Marchal, 61 P. Costa, 36, 47 P. Feyfant, 54 P. Lopes dos Santos, 33 P. Reynolds, 52 P. Tapák, 41 P.B. de Moura Oliveira, 34 Pablo Otálora, 49 Paul Mooney, 57 Paula Rocha, 44, 64 Paulo Costa, 42, 48, 65 Paulo Garrido, 40 Paulo Leitão, 62 Pedro Folhento, 53 Peter Crouch, 45

R. Ferreira, 39

R. Vilanova, 40 R.C. Barros, 54 Rafael Ribeiro, 50 Ramiro S. Barbosa, 36 Riaan Stopforth, 57 Ricardo B. Sousa, 49 Ricardo Cajo, 39 Ricardo Pereira, 44 Ricardo Rosa, 48 Ricardo Santos, 50 Rita Silva, 43 Robain De Keyser, 39 Rolf Findeisen, 45 Roman Chertovskih, 63 Rui Barros, 53 Rui Rebelo, 41 Russell Phillips, 57

S. Illana Rico, 61 S.J. Costa, 39 Salik Ram Khanal, 43, 51 Shiquan Zhao, 39 Silvia Maria Zanoli, 37, 38 Sílvio Capela, 43 Sílvio Gama, 63 Sílvio M. Gama, 62

T-P Azevedo Perdicoúlis, 33 T. Cunha, 54 Teresa Mendonça, 64 Thadeu Brito, 48 Theo van Niekerk, 57 Thérèse Azar, 46 Tima O. Smajlovic, 64 Tor A. Johansen, 56 Tsuyoshi Ishizone, 58

V. Jurdjevic, 32 Victor D. Reyes Dreke, 37 Vitor Anes, 50 Vitor Filipe, 51 Vitor H. Pagani, 62 Vítor Filipe, 43 Vítor H. Pinto, 42, 65

Wellington Maidana, 62 Wojciech Giernacki, 61 Yassine Boukili, 46, 60

Zhiming Zhang, 32

Ángeles Hoyo, 33